阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF
阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要...
阅读下面材料:小炎遇到这样一个问题:如图1,点E、F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB,AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD中,AB=AD,∠BAD=90°点E,F分别在边BC,CD上,∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足______关系时,仍有EF=BE+DF;(2)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC=2,求DE的长.
展开
1个回答
展开全部
(1)∠B+∠D=180°时,EF=BE+DF;
如图,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF.
(2)如图,
∵AB=AC,
∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.
∠B=∠ACG,
BD=CG,
AD=AG
∵△ABC中,∠BAC=90°,
∴∠ACB+∠ACG=∠ACB+∠B=90°.
即∠ECG=90°.
∴EC2+CG2=EG2.
在△AEG与△AED中,
∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.
又∵AD=AG,AE=AE,
∴△AEG≌△AED.
∴DE=EG.
又∵CG=BD,
∴BD2+EC2=DE2.
∴DE=
.
如图,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
|
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF.
(2)如图,
∵AB=AC,
∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.
∠B=∠ACG,
BD=CG,
AD=AG
∵△ABC中,∠BAC=90°,
∴∠ACB+∠ACG=∠ACB+∠B=90°.
即∠ECG=90°.
∴EC2+CG2=EG2.
在△AEG与△AED中,
∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD.
又∵AD=AG,AE=AE,
∴△AEG≌△AED.
∴DE=EG.
又∵CG=BD,
∴BD2+EC2=DE2.
∴DE=
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询