已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,且当x>0时,f(x)<0,又f(1)=-2
1、判断f(x)的奇偶性2、f(x)在区间[-3,3]上的最大值。3、解关于x的不等式f(ax^2)-2f(x)<f(ax)+4...
1、判断f(x)的奇偶性
2、f(x)在区间[-3,3]上的最大值。
3、解关于x的不等式f(ax^2)-2f(x)<f(ax)+4 展开
2、f(x)在区间[-3,3]上的最大值。
3、解关于x的不等式f(ax^2)-2f(x)<f(ax)+4 展开
3个回答
展开全部
(1)
令y = x = 0
得f(0) + f(0) = f(0 + 0)
即f(0) = 0
令y = -x
得f(x) + f(-x) = f(x - x) = f(0) = 0
即f(x)=-f(-x)
因此f(x)在R上为奇函数
(2)
令x1 > x2
f(x1) = f(x1 - x2 + x2) = f(x1 - x2) + f(x2)
因为x > 0时,f(x) < 0,所以 x1 - x2 > 0所以f(x1 - x2) < 0
即f(x1) - f(x2) = f(x1 - x2) < 0得f(x1) < f(x2)
所以f(x)在R上是减函数
最小值f(3) = f(2) + f(1) = f(1) + f(1) + f(1) = -6
最大值f(-3) = -f(3) = 6
(3)
令x = y
得f(2x) = 2f(x)
令x = 1
得f(2) = 2f(1) = -4
所以f(ax^2) - f(2x) < f(ax) - f(2)
即f(ax^2) + f(2) < f(ax) + f(2x)
即f(ax^2 + 2) < f(ax + 2x)
即ax^2 + 2 > ax + 2x
当a = 0时
x < 1
当1 > a > 0时
x < 1 或 x > 2/a
当a >= 1时
x < 2/a 或 x > 1
当a < 0时
x < 2/a 或 x > 1
令y = x = 0
得f(0) + f(0) = f(0 + 0)
即f(0) = 0
令y = -x
得f(x) + f(-x) = f(x - x) = f(0) = 0
即f(x)=-f(-x)
因此f(x)在R上为奇函数
(2)
令x1 > x2
f(x1) = f(x1 - x2 + x2) = f(x1 - x2) + f(x2)
因为x > 0时,f(x) < 0,所以 x1 - x2 > 0所以f(x1 - x2) < 0
即f(x1) - f(x2) = f(x1 - x2) < 0得f(x1) < f(x2)
所以f(x)在R上是减函数
最小值f(3) = f(2) + f(1) = f(1) + f(1) + f(1) = -6
最大值f(-3) = -f(3) = 6
(3)
令x = y
得f(2x) = 2f(x)
令x = 1
得f(2) = 2f(1) = -4
所以f(ax^2) - f(2x) < f(ax) - f(2)
即f(ax^2) + f(2) < f(ax) + f(2x)
即f(ax^2 + 2) < f(ax + 2x)
即ax^2 + 2 > ax + 2x
当a = 0时
x < 1
当1 > a > 0时
x < 1 或 x > 2/a
当a >= 1时
x < 2/a 或 x > 1
当a < 0时
x < 2/a 或 x > 1
展开全部
1取y=x=0,f(0)+f(0)=f(0+0),f(0)=0
取y=-x,f(x)+f(-x)=f(x-x)=f(0)=0,f(x)=-f(-x)
定义域为R所以f(x)为奇函数
(2)取x1>x2
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)
当x>0时,f(x)<0
x1-x2>0
f(x1-x2)<0
f(x1)<f(x2)
f(x)在R上是减函数
∴f(x)min=f(-3)=f(-1)+f(-1)+f(-1)=3f(-1)=-3f(1)=6
f(x)max=f(3)=f(1)+f(1)+f(1)=3f(1)=-6
取y=-x,f(x)+f(-x)=f(x-x)=f(0)=0,f(x)=-f(-x)
定义域为R所以f(x)为奇函数
(2)取x1>x2
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)
当x>0时,f(x)<0
x1-x2>0
f(x1-x2)<0
f(x1)<f(x2)
f(x)在R上是减函数
∴f(x)min=f(-3)=f(-1)+f(-1)+f(-1)=3f(-1)=-3f(1)=6
f(x)max=f(3)=f(1)+f(1)+f(1)=3f(1)=-6
追问
第三问哪?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:f(-x)+g(-x)=x²-3x+1=g(x)-f(x) (1)
f(x)+g(x)=x²+3x+1 (2)
(1)+(2)得
2g(x)=2x²+2
∴g(x)=x²+1
f(x)=3x
f(x)+g(x)=x²+3x+1 (2)
(1)+(2)得
2g(x)=2x²+2
∴g(x)=x²+1
f(x)=3x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询