棱长均为2的正四面体的外接球的表面积为.
展开全部
设四面体为P-ABCD.
则过PAC三点的平面截外接球面于它的大圆.AC为这大圆的一条弦.
连接AC,DC.设它们相交于E,连接PE并延长交上述大圆于F,则AF为球面的直径.
容易证明PE垂直于平面ABCD.故三角形PEC为直角三角形,其中PC=2,EC= 根号2.
由此求得PE=根号2.
在上述大圆中用交弦定理,有:AE*EC = PE*EF. 注意到EA=EC=根号2
求得EF=根号2.故直径PF=PE+EF=2根号2.
而半径R=根号2.从而外接球表面积为S=4πR^2=8π .
则过PAC三点的平面截外接球面于它的大圆.AC为这大圆的一条弦.
连接AC,DC.设它们相交于E,连接PE并延长交上述大圆于F,则AF为球面的直径.
容易证明PE垂直于平面ABCD.故三角形PEC为直角三角形,其中PC=2,EC= 根号2.
由此求得PE=根号2.
在上述大圆中用交弦定理,有:AE*EC = PE*EF. 注意到EA=EC=根号2
求得EF=根号2.故直径PF=PE+EF=2根号2.
而半径R=根号2.从而外接球表面积为S=4πR^2=8π .
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
外接球的表面积s=4πr²
r=√3
表面积s=4πr²=4×π×﹙√3﹚²=12π
r=√3
表面积s=4πr²=4×π×﹙√3﹚²=12π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我来回答解:正四面体的棱长为a,
高为√6a/3。
球心把高分为1:3,
所以外接球半径r=
(√6a/3)*(3/4)=√6a/4
表面积=4πr²=3πa²/2
高为√6a/3。
球心把高分为1:3,
所以外接球半径r=
(√6a/3)*(3/4)=√6a/4
表面积=4πr²=3πa²/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询