如图,在平行四边形ABCD中EF平行于BD分别交BC,CD于点P,Q交AB,AD的延长线于E,F,已知BE=BP
展开全部
分析:(1)四边形ABCD是平行四边形,则BC∥AF,可得同位角∠BPE=∠F;在等腰△BEP中,∠E=∠BPE,等量代换后即可证得所求的结论;(2)由EF∥BD,可得同位角∠ABD=∠E,∠ADB=∠F;由(1)知∠E=∠F,等量代换后可证得∠ABD=∠ADB,即AB=AD,根据一组邻边相等的平行四边形是菱形即可判定四边形ABCD是菱形.
证明:(1)在▱ABCD中,BC∥AF, (注:∠BPE为∠1,∠ABD为∠2,∠ADB为∠3)
∴∠1=∠F,
∵BE=BP,
∴∠E=∠1,
∴∠E=∠F;
(2)∵BD∥EF,
∴∠2=∠E,∠3=∠F,
∵∠E=∠F,
∴∠2=∠3,
∴AB=AD,
∴▱ABCD是菱形.
点评:此题主要考查了平行四边形的性质及菱形的判定:一组邻边相等的平行四边形是菱形.
证明:(1)在▱ABCD中,BC∥AF, (注:∠BPE为∠1,∠ABD为∠2,∠ADB为∠3)
∴∠1=∠F,
∵BE=BP,
∴∠E=∠1,
∴∠E=∠F;
(2)∵BD∥EF,
∴∠2=∠E,∠3=∠F,
∵∠E=∠F,
∴∠2=∠3,
∴AB=AD,
∴▱ABCD是菱形.
点评:此题主要考查了平行四边形的性质及菱形的判定:一组邻边相等的平行四边形是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵BP = BE
∴ ∠E = ∠BPE
∵在平行四边形ABCD中,BC//AD AB//CD
∴∠BPE = ∠F
∴∠E = ∠F
∵BD//EF
∴∠E = ∠ABD ∠F = ∠ADB
∴∠ABD = ∠ADB
∴ AB = AD
故:平行四边形ABCD是菱形
∴ ∠E = ∠BPE
∵在平行四边形ABCD中,BC//AD AB//CD
∴∠BPE = ∠F
∴∠E = ∠F
∵BD//EF
∴∠E = ∠ABD ∠F = ∠ADB
∴∠ABD = ∠ADB
∴ AB = AD
故:平行四边形ABCD是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.因为 BP//AF
所以 角BPE=角F
因为 BE=BP
所以 角E=角BPE=角F
所以 角BPE=角F
因为 BE=BP
所以 角E=角BPE=角F
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵EB=EP,
∵∠E=∠P,BC∥AD
∴∠P=∠F
∴∠E=∠F
∵EF∥BD,EB=EP
∴∠P=∠E=∠PBD=∠ADB=∠CBD=∠CDB
∴△BEP∽△ABD≌△CBD
∴AB=AD=BC=DC,□ABCD是菱形
∵∠E=∠P,BC∥AD
∴∠P=∠F
∴∠E=∠F
∵EF∥BD,EB=EP
∴∠P=∠E=∠PBD=∠ADB=∠CBD=∠CDB
∴△BEP∽△ABD≌△CBD
∴AB=AD=BC=DC,□ABCD是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询