1个回答
展开全部
解:
x²+4y²+x+2y=1
(x²+x+¼)+(4y²+2y+¼)=3/2
(x+½)²+(2y+½)²=3/2
令x+½=(√6/2)cosα,2y+½=(√6/2)sinα
则x=(√6cosα-1)/2,y=(√6sinα-1)/4
xy=[(√6cosα-1)/2][(√6sinα-1)/4]
=[6sinαcosα-√6(sinα+cosα)+1]/8
=[3sin(2α)-2√3cos(α-π/4)]/8
=[3cos(π/2 -2α)-2√3cos(α-π/4)]/8
=[3cos2(α-π/4)-2√3cos(α-π/4)]/8
=[3(2cos²(α-π/4)-1)-2√3cos(α-π/4)]/8
=[6cos²(α-π/4)-2√3cos(α-π/4)-3]/8
=¾[(cos(α-π/4)- √3/6)² -5/12]
-1≤cos(α-π/4)≤1
cos(α-π/4)=-1时,xy有最大值
(xy)max=[6·(-1)²-2√3·(-1)-3]/8=(3+2√3)/8
xy的最大值为(3+2√3)/8
x²+4y²+x+2y=1
(x²+x+¼)+(4y²+2y+¼)=3/2
(x+½)²+(2y+½)²=3/2
令x+½=(√6/2)cosα,2y+½=(√6/2)sinα
则x=(√6cosα-1)/2,y=(√6sinα-1)/4
xy=[(√6cosα-1)/2][(√6sinα-1)/4]
=[6sinαcosα-√6(sinα+cosα)+1]/8
=[3sin(2α)-2√3cos(α-π/4)]/8
=[3cos(π/2 -2α)-2√3cos(α-π/4)]/8
=[3cos2(α-π/4)-2√3cos(α-π/4)]/8
=[3(2cos²(α-π/4)-1)-2√3cos(α-π/4)]/8
=[6cos²(α-π/4)-2√3cos(α-π/4)-3]/8
=¾[(cos(α-π/4)- √3/6)² -5/12]
-1≤cos(α-π/4)≤1
cos(α-π/4)=-1时,xy有最大值
(xy)max=[6·(-1)²-2√3·(-1)-3]/8=(3+2√3)/8
xy的最大值为(3+2√3)/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询