设函数f(x)在(a,b)内可导,则在(a,b)内f'(x)>0是f(x)在(a,b)内单调增加的()
选D。
设函数f(x)在(a,b)内可导,则:f(x) 在(a,b)内严格单调增加。
在(a,b)内 f '(x) ≥ 0 且f '(x) 在(a,b) 的任何一个子区间上不恒等于0 。
对于一元函数有,可微<=>可导=>连续=>可积。
对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。
函数的近代定义
是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
设函数f(x)在(a,b)内可导,则:f(x) 在(a,b)内严格单调增加
在(a,b)内 f '(x) ≥ 0 且f '(x) 在(a,b) 的任何一个子区间上不恒等于0 .
对于一元函数有,可微<=>可导=>连续=>可积
对于多元函数,不存在可导的概念,只有偏导数存在。函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。
可导与连续的关系:可导必连续,连续不一定可导;
可微与连续的关系:可微与可导是一样的;
可积与连续的关系:可积不一定连续,连续必定可积;
可导与可积的关系:可导一般可积,可积推不出一定可导;
扩展资料:
可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
设函数f(x)在(a,b)内可导,则在(a,b)内f'(x)>0是f(x)在(a,b)内单调增加的(B、充分条件)。
设函数f(x)在(a,b)内可导,则:f(x) 在(a,b)内严格单调增加
在(a,b)内 f '(x) ≥ 0 且f '(x) 在(a,b) 的任何一个子区间上不恒等于0
A => B 则 A 是 B 的充分条件, B 是 A 的必要条件
扩展资料:
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
如果是严格单调增加就是充要条件了
如何确定充分条件和必要条件,这两个我总分不清楚,能详细讲解一下吗?谢谢。
设函数f(x)在(a,b)内可导,则: f(x) 在(a,b)内严格单调增加
<=> 在(a,b)内 f '(x) ≥ 0 且f '(x) 在(a,b) 的任何一个子区间上不恒等于0 .
如何确定充分条件和必要条件,这两个我总分不清楚,能详细讲解一下吗?谢谢
A => B 则 A 是 B 的充分条件, B 是 A 的必要条件。