已知函数f(x)=ln(e^x+1)-1/2x、求函数f(x)的单调区间,并判断函数的奇偶性

若不等式f(x^2+2)<=f(2ax-a^2)的解集是A={x|x^2-5x+4<=t}的子集求实数a的取值范围... 若不等式f(x^2+2)<=f(2ax-a^2)的解集是A={x|x^2-5x+4<= t}的子集
求实数a的取值范围
展开
currelly
2011-10-21 · TA获得超过1055个赞
知道小有建树答主
回答量:529
采纳率:0%
帮助的人:275万
展开全部
1)对f(x)求导得:f‘(x)=e^x/e^x+1+1/2x^2因为f‘(x)>o在x不等于0时恒成立所以f(x)在x不等于0的前提下单调递增。故增区间为(负无穷大,0)和(0,正无穷大)又验证f(-x)=-f(x)知其是奇函数
阡之
2012-06-30
知道答主
回答量:35
采纳率:0%
帮助的人:23.4万
展开全部
:(Ⅰ)f′(x)=ex ex+1 -1 2 =ex-1 ex+1 ,
当x∈[0,+∞)时,f′(x)≥0
∴f(x)在[0,+∞)上是单调增函数,在(-∞,0)上是单调减函数
由f(x)-f(-x)=ln(e^x+1/ e^-x+1 )-x=lnex-x=0∴f(x)为R上的偶函数
(Ⅱ)由x2+2>0,f(2ax-a)=f(|2ax-a|)
从而不等式等价于:x2+2≤|a||2x-1|
又不等式x2-5x+4≤0的解集为A=[1,4]的子集,
故1≤x≤4,∴2x-1>0
即x2+2-2|a|x+|a|≤0
10当△<0时,不等式的解集为空集,满足条件,即|a|∈(-1,2)⇒|a|<2成立;
当△=0时,|a|=2,此时x2-4x+4≤0⇒x=2∈A成立;
30当△>0时,|a|>2,
设方程x2+2-2|a|x+|a|=0的两根为x1,x2,则 f(1)≥0 f(4)≥0 1<|a<4 |a>2 ⇒2<|a|≤18/ 7综上,|a|≤18 7 ⇒a∈[-18 /7 ,18 /7 ]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式