求四阶行列式怎么求,例题如下图第三题!求方法
展开全部
D=-1*(-1)^(3+1)*5+2*(-1)^(3+2)*3+0*(-1)^(3+3)*(-7)+1*(-1)^(3+4)*4 =-5-6-4 =-15。
若n阶方阵A=(aij),则A相应的行列式D记作D=|A|=detA=det(aij)。
若矩阵A相应的行列式D=0,称A为奇异矩阵,否则称为非奇异矩阵。
标号集:序列1,2,...,n中任取k个元素i1,i2,...,ik满足1≤i12<...k≤n(1)。
行列式A中某行(或列)用同一数k乘,其结果等于kA。
行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
行列式A中两行(或列)互换,其结果等于-A。把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询