如图,在三角形ABC中,点O是AC边上一个动点

在三角形ABC中,点O是AC边上一动点,过点O做直线MN//BC,设MN交角BCA内角平分线于E,外角平分线于点F三角形ABC中,O是AC上一个动点,过O做直线MN//B... 在三角形ABC中,点O是AC边上一动点,过点O做直线MN//BC,设MN交角BCA内角平分线于E,外角平分线于点F
三角形ABC中,O是AC上一个动点,过O做直线MN//BC,设MN交<BCA的平分线于E,交<BCA的外角平分线于F
(1)证明:EO=OF
(2)当点O运动到何处时,四边形AECF是矩形?说明理由
(3)若AC边上存在点O,是四边形AECF是正方形,且AE:BC=根号6:2,求∠B的大小
展开
mxy12170
推荐于2017-11-24 · TA获得超过9558个赞
知道小有建树答主
回答量:378
采纳率:0%
帮助的人:254万
展开全部
在BC的延长线上任取一点G。
∵MN∥BC,∴∠OEC=∠BCE、∠OFC=∠GCF, 又∠OCE=∠BCE、∠OCF=∠GCF,
∴∠OEC=∠OCE、∠OFC=∠OCF,∴EO=CO、OF=CO,∴EO=OF。

当O为AC的中点时,AECF为平行四边形。 证明如下:
由第一个问题的结论,有:EO=OF,又AO=CO,∴AECF是平行四边形。[对角线互相平分]
∴当O运动到AC的中点时,四边形AECF是平行四边形。

∵AECF是正方形, ∴AC=√2AE、∠ACE=45°。
∵∠BCE=∠ACE, ∴∠ACB=2∠ACE=90°。
又AE/BC=√6/2, ∴AC/BC=√2AE/BC=√3, ∴tan∠B=AC/BC=√3, ∴此时∠B=60°。
采纳我!!!!!
飘渺的绿梦
2011-10-23 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3091
采纳率:100%
帮助的人:1786万
展开全部
第一个问题:
在BC的延长线上任取一点G。
∵MN∥BC,∴∠OEC=∠BCE、∠OFC=∠GCF, 又∠OCE=∠BCE、∠OCF=∠GCF,
∴∠OEC=∠OCE、∠OFC=∠OCF,∴EO=CO、OF=CO,∴EO=OF。

第二个问题:
当O为AC的中点时,AECF为平行四边形。 证明如下:
由第一个问题的结论,有:EO=OF,又AO=CO,∴AECF是平行四边形。[对角线互相平分]
∴当O运动到AC的中点时,四边形AECF是平行四边形。

第三个问题:
∵AECF是正方形, ∴AC=√2AE、∠ACE=45°。
∵∠BCE=∠ACE, ∴∠ACB=2∠ACE=90°。
又AE/BC=√6/2, ∴AC/BC=√2AE/BC=√3, ∴tan∠B=AC/BC=√3, ∴此时∠B=60°。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
怡然兴
2012-05-13 · TA获得超过1535个赞
知道答主
回答量:272
采纳率:0%
帮助的人:100万
展开全部
解:(1)∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又∵CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
(2)当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.

(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
枫叶揺
2012-06-04 · TA获得超过419个赞
知道答主
回答量:49
采纳率:0%
帮助的人:7.1万
展开全部
解:(1)∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又∵CE平分∠BCO,CF平分∠GCO,
∴∠OCE=∠BCE,∠OCF=∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.

(2)当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
∵FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.

(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
已知MN∥BC,当∠ACB=90°,则
∠AOF=∠COE=∠COF=∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
更易1
2012-06-07
知道答主
回答量:9
采纳率:0%
帮助的人:1.4万
展开全部
在BC的延长线上任取一点G。
∵MN∥BC,∴∠OEC=∠BCE、∠OFC=∠GCF, 又∠OCE=∠BCE、∠OCF=∠GCF,
∴∠OEC=∠OCE、∠OFC=∠OCF,∴EO=CO、OF=CO,∴EO=OF。

当O为AC的中点时,AECF为平行四边形。 证明如下:
由第一个问题的结论,有:EO=OF,又AO=CO,∴AECF是平行四边形。[对角线互相平分]
∴当O运动到AC的中点时,四边形AECF是平行四边形。

∵AECF是正方形, ∴AC=√2AE、∠ACE=45°。
∵∠BCE=∠ACE, ∴∠ACB=2∠ACE=90°。
又AE/BC=√6/2, ∴AC/BC=√2AE/BC=√3, ∴tan∠B=AC/BC=√3, ∴此时∠B=60°。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式