已知关于x的方程x^2-(2k+1)x+4(k-1/2)=0.
已知关于x的方程x^2-(2k+1)x+4(k-1/2)=0.(1)求证,无论k取何值,这个方程总有实数根(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,...
已知关于x的方程x^2-(2k+1)x+4(k-1/2)=0. (1)求证,无论k取何值,这个方程总有实数根 (2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,说明理由 (3)当等腰三角形ABC的边长a=4,另两边的长b,c恰好是这个方程的两根时,求三角形ABC的周长
展开
展开全部
(1)
Δ=[-(2k+1)]^2-4×4(k-1/2)
=(2k-3)^2
≥0
所以无论k取何值,这个方程总有实数根
(2)两实数x1,x2互为相反数
则x1+x2=0
韦达定理:x1+x2=-[-(2k+1)]=2k+1=0
k=-1/2
(3)等腰三角形ABC的边长a=4
若b=a=4或c=a=4
代入方程:16-4(2k+1)+4(k-1/2)=0
解得:k=5/2
方程为x^2-6x+8=0.
解得c=2或b=2
三角形ABC的周长=4+4+2=10
若b=c
方程x^2-(2k+1)x+4(k-1/2)=0有两相等的实数根b,c
Δ=[-(2k+1)]^2-4×4(k-1/2)=0
解得:k=3/2
方程为x^2-4x+4=0
解得b=c=2
三角形ABC的周长=4+2+2=8
Δ=[-(2k+1)]^2-4×4(k-1/2)
=(2k-3)^2
≥0
所以无论k取何值,这个方程总有实数根
(2)两实数x1,x2互为相反数
则x1+x2=0
韦达定理:x1+x2=-[-(2k+1)]=2k+1=0
k=-1/2
(3)等腰三角形ABC的边长a=4
若b=a=4或c=a=4
代入方程:16-4(2k+1)+4(k-1/2)=0
解得:k=5/2
方程为x^2-6x+8=0.
解得c=2或b=2
三角形ABC的周长=4+4+2=10
若b=c
方程x^2-(2k+1)x+4(k-1/2)=0有两相等的实数根b,c
Δ=[-(2k+1)]^2-4×4(k-1/2)=0
解得:k=3/2
方程为x^2-4x+4=0
解得b=c=2
三角形ABC的周长=4+2+2=8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询