如何证明(a+b+c)/3大于等于3*√abc 要简单的 看得懂的 完整的 急需
2011-10-29
展开全部
设a=x^3,b=y^3,c=z^3
x,y,z是非负数时
x^3+y^3+z^3-3xyz
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]/2≥0
所以,
x^3+y^3+z^3≥3xyz
则:(a+b+c)/3≥三次根号(abc)
x,y,z是非负数时
x^3+y^3+z^3-3xyz
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
=(x+y+z)[(x-y)^2+(y-z)^2+(x-z)^2]/2≥0
所以,
x^3+y^3+z^3≥3xyz
则:(a+b+c)/3≥三次根号(abc)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |