已知各项均为正数的数列{an}满足a1=3,且(2an+1-an)/(2an-an+1)=anan+1 10
已知各项均为正数的数列{an}满足a1=3,且(2an+1-an)/(2an-an+1)=anan+1(1)求数列{an}的通项公式(2)设Sn=(a1)2+(a2)2+...
已知各项均为正数的数列{an}满足a1=3,且(2an+1-an)/(2an-an+1)=anan+1
(1)求数列{an}的通项公式
(2)设Sn=(a1)2+(a2)2+......+(an)2,Tn=1/(a1)2+1/(a2)2+......1/(an)2,求Sn+Tn,并确定最小正整数n,使Sn+Tn为整数 展开
(1)求数列{an}的通项公式
(2)设Sn=(a1)2+(a2)2+......+(an)2,Tn=1/(a1)2+1/(a2)2+......1/(an)2,求Sn+Tn,并确定最小正整数n,使Sn+Tn为整数 展开
1个回答
展开全部
解:(1)∵(2a[n+1]-a[n])/(2a[n]-a[n+1])=a[n]a[n+1],n∈N
∴2a[n+1]-a[n]=a[n]a[n+1](2a[n]-a[n+1])
∵{a[n]}是各项均为正数的数列
∴两边同除以a[n]a[n+1],得:2/a[n]-1/a[n+1]=2a[n]-a[n+1]
即:a[n+1]-1/a[n+1]=2(a[n]-1/a[n])
∵a1=3
∴{a[n]-1/a[n]}是首项为a[1]-1/a[1]=8/3,公比为2的等比数列
即:a[n]-1/a[n]=8*2^(n-1)/3=2^(n+2)/3
∴a[n]^2-a[n]2^(n+2)/3-1=0
a[n]=2^(n+1)/3±√[2^(2n+2)/9+1]
∵[2^(n+1)/3]^2<[2^(n+1)/3]^2+1=[2^(2n+2)/9+1]
又∵{a[n]}是各项均为正数的数列
∴a[n]=√[2^(2n+2)/9+1]+2^(n+1)/3
(2)∵a[n]=√[2^(2n+2)/9+1]+2^(n+1)/3
设:c[n]=2^(n+1)/3,则:c[n]^2=2^(2n+2)/9
∴a[n]=√[c[n]^2+1]+c[n]
∵有理化1/a[n],有:1/a[n]=√[c[n]^2+1]-c[n]
∴a[n]^2+(1/a[n])^2=4c[n]^2+2
∵S[n]=a[1]^2+a[2]^2+…+a[n]^2
T[n]=1/a[1]^2+1/a[2]^2+…+1/a[n]^2
∴S[n]+T[n]
=(a[1]^2+1/a[1]^2)+(a[2]^2+1/a[2]^2)+…+(a[n]^2+1/a[n]^2)
=(4c[1]^2+2)+(4c[2]^2+2)+...+(4c[n]^2+2)
=4(c[1]^2+c[2]^2+...c[n]^2)+2n
=4(2^(2*1+2)/9+2^(2*2+2)/9+...+2^(2*n+2)/9)+2n
=4*16[(4^n-1)/(4-1)]/9+2n
=64(4^n-1)/27+2n
∵64=2^6,27=3^3,而2和3互素,即:gcd(2,3) = 1
∴要使S[n]+T[n]为整数,必须(4^n-1)可以被27整除
该问题实际是求:2^(2n)和1关于模27同余的问题,即:2^(2n)≡1(mod 27) 【1】
∵2和27互素,即:gcd(2,27) = 1
∴根据欧拉定理:2^φ(27)≡1(mod 27) 【2】
∵27的欧拉函数值:φ(27)=φ(3^3)=[3^(3-1)](3-1)=18 【3】
即:小于或等于27的正整数中与27互质的数共有18个
∴由【1】、【2】、【3】式,得:2n=18
即:n=9是使S[n]+T[n]=64(4^n-1)/27+2n为整数的最小正整数
∴2a[n+1]-a[n]=a[n]a[n+1](2a[n]-a[n+1])
∵{a[n]}是各项均为正数的数列
∴两边同除以a[n]a[n+1],得:2/a[n]-1/a[n+1]=2a[n]-a[n+1]
即:a[n+1]-1/a[n+1]=2(a[n]-1/a[n])
∵a1=3
∴{a[n]-1/a[n]}是首项为a[1]-1/a[1]=8/3,公比为2的等比数列
即:a[n]-1/a[n]=8*2^(n-1)/3=2^(n+2)/3
∴a[n]^2-a[n]2^(n+2)/3-1=0
a[n]=2^(n+1)/3±√[2^(2n+2)/9+1]
∵[2^(n+1)/3]^2<[2^(n+1)/3]^2+1=[2^(2n+2)/9+1]
又∵{a[n]}是各项均为正数的数列
∴a[n]=√[2^(2n+2)/9+1]+2^(n+1)/3
(2)∵a[n]=√[2^(2n+2)/9+1]+2^(n+1)/3
设:c[n]=2^(n+1)/3,则:c[n]^2=2^(2n+2)/9
∴a[n]=√[c[n]^2+1]+c[n]
∵有理化1/a[n],有:1/a[n]=√[c[n]^2+1]-c[n]
∴a[n]^2+(1/a[n])^2=4c[n]^2+2
∵S[n]=a[1]^2+a[2]^2+…+a[n]^2
T[n]=1/a[1]^2+1/a[2]^2+…+1/a[n]^2
∴S[n]+T[n]
=(a[1]^2+1/a[1]^2)+(a[2]^2+1/a[2]^2)+…+(a[n]^2+1/a[n]^2)
=(4c[1]^2+2)+(4c[2]^2+2)+...+(4c[n]^2+2)
=4(c[1]^2+c[2]^2+...c[n]^2)+2n
=4(2^(2*1+2)/9+2^(2*2+2)/9+...+2^(2*n+2)/9)+2n
=4*16[(4^n-1)/(4-1)]/9+2n
=64(4^n-1)/27+2n
∵64=2^6,27=3^3,而2和3互素,即:gcd(2,3) = 1
∴要使S[n]+T[n]为整数,必须(4^n-1)可以被27整除
该问题实际是求:2^(2n)和1关于模27同余的问题,即:2^(2n)≡1(mod 27) 【1】
∵2和27互素,即:gcd(2,27) = 1
∴根据欧拉定理:2^φ(27)≡1(mod 27) 【2】
∵27的欧拉函数值:φ(27)=φ(3^3)=[3^(3-1)](3-1)=18 【3】
即:小于或等于27的正整数中与27互质的数共有18个
∴由【1】、【2】、【3】式,得:2n=18
即:n=9是使S[n]+T[n]=64(4^n-1)/27+2n为整数的最小正整数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询