为什么e是一个自然常数?
1个回答
展开全部
自然常数,为数学中一个常数,是一个无限不循环小数,且为超越数,其值约为2.71828。
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔 (John Napier)引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
扩展资料
e不仅仅只是一个随意数字。事实上,它是数学中最有用的常数之一。如果绘制方程y = e^x,就会发现,对于曲线上任何点的斜率也是e^x,而从负无穷大到x的曲线下方面积也是e^x。e是唯一使y = n^x这个方程有如此奇特性质的数字。
在微积分中,可以想象e也是一个非常重要的数字。同时,自然常数e也是物理学中的一个重要数字,它通常出现在有关波(如光波、声波和量子波)的方程之中。
此外,关于e还有一个非常著名的公式,即欧拉恒等式:e^(iπ) + 1 = 0,这个完美的公式把数学中最重要的数字都联系在一起了。
参考资料来源:百度百科-e
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询