e的负x次方的原函数是什么啊

帐号已注销
2021-07-16 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:159万
展开全部

e的负x次幂的原函数: - e^(-x) +C,C为常数。

解答过程如下:

求e^(-x)的原函数,就是对e^(-x)不定积分。

∫e^(-x)dx

= - ∫ e^(-x) d(-x)

= - e^(-x) +C

原函数定理

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,

故若函数f(x)有原函数,那么其原函数为无穷多个。

例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

生活达人在此
2021-07-16 · TA获得超过7912个赞
知道小有建树答主
回答量:1975
采纳率:97%
帮助的人:28.3万
展开全部

具体回答如下:

e的负x次方的原函数是:

∫e^(-x)dx

= - ∫ e^(-x) d(-x)

= - e^(-x) +C

原函数存在定理:

若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
热点那些事儿
高粉答主

2021-07-16 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:195万
展开全部

e的负x次幂的原函数: - e^(-x) +C,C为常数。

解答过程如下:

求e^(-x)的原函数,就是对e^(-x)不定积分。

∫e^(-x)dx

= - ∫ e^(-x) d(-x)

= - e^(-x) +C

原函数

对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
教育小百科达人
2020-12-24 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:460万
展开全部

e的负x次幂的原函数: - e^(-x) +C,C为常数。

解答过程如下:

求e^(-x)的原函数,就是对e^(-x)不定积分。

∫e^(-x)dx

= - ∫ e^(-x) d(-x)

= - e^(-x) +C

扩展资料:

对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2020-12-25 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:708万
展开全部

e的负x次幂的原函数: - e^(-x) +C,C为常数。


解答过程如下:


求e^(-x)的原函数,就是对e^(-x)不定积分。


∫e^(-x)dx


= - ∫ e^(-x) d(-x)


= - e^(-x) +C

扩展资料


当幂的指数为负数时,称为“负指数幂”。正数a的-r次幂(r为任何正数)定义为a的r次幂的倒数。

如:

2的6次方=2^6=2×2×2×2×2×2=4×2×2×2×2=8×2×2×2=16×2×2=32×2=64

3的4次方=3^4=3×3×3×3=9×3×3=27×3=81

如上面的式子所示,2的6次方,就是6个2相乘,3的4次方,就是4个3相乘。

如果是比较大的数相乘,还可以结算计算器、计算机等计算工具来进行计算。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式