已知圆C过点P(1,1),且与圆M:(x+2)^2+(y+2)^2=r^2(r>0)关于直线x+y+2=0对称。

(3)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由。... (3)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由。 展开
octstonewk
2011-11-10 · TA获得超过9700个赞
知道大有可为答主
回答量:3786
采纳率:50%
帮助的人:1679万
展开全部
P(1,1)关于直线x+y+2的对称点易求得为P'(-3,3),依题意得P'在圆M上,
可求得r^2=2
故根据对称,可求得圆C的方程为x^2+y^2=2。
设两直线的倾斜角分别为a和b,k1=tan a;k2=tan b
因为a+b=180°,由正切的性质,k1+k2=0
不妨设第一条直线斜率是k
即PA: y=kx+1-k
则PB: y=-kx+k+1

让两直线分别于圆联立:
PA与圆相联立:
x^2 + (kx+1-k)^2 = 2
化简得:(k^2+1)x^2 + (2k-2k^2)x + k^2-2k-1 = 0
因式分解得:(x-1)[(k^2+1)x - (k^2-2k-1)]=0
所以A的横坐标为(k^2-2k-1)/(k^2+1)
代入PA直线,解得A的坐标为((k^2-2k-1)/(k^2+1) , -(k^2+2k)/(k^2+1))

同理联立PB与圆,解出B的坐标
B((k^2+2k-1)/(k^2+1) , (-k^2+2k+1)/(k^2+1))

求AB的斜率Kab=(yb-ya)/(xb-xa)=...=1=Kop
所以OP‖AB

参考资料: http://zhidao.baidu.com/question/211767672.html

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式