已知向量a=(cosx,sinx),向量b=(根号3倍的cosx,cosx)若f(x)=向量a向量b+根号3求函数f(x)的最小正
2个回答
展开全部
f(x)=向量a向量b+根号3
=√3cos²x+sinxcosx+√3
=(√3/2)(cos2x+1)+(1/2)sin2x+√3
=(1/2)sin2x+(√3/2)cos2x+(3/2)√3
=sin(2x+π/3)+(3/2)√3
所以最小正周期T=2π/2=π
对称轴方程2x+π/3=2kπ+π/2
x=kπ+π/12 k∈∈Z
x∈[-5π/12, π/12]
2x+π/3∈[-7π/6, -π/6]
f(x)最大=f(-5π/6)=sin(-7π/6)+(3/2)√3
=sin(5π/6)+(3/2)√3
=sin(π/6)+(3/2)√3
=1/2+(3/2)√3
f(x)最小=f(-π/6)=sin(-π/2)+(3/2)√3
=-1+(3/2)√3
所以值域f(x)∈[-1+(3/2)√3, 1/2+(3/2)√3]
=√3cos²x+sinxcosx+√3
=(√3/2)(cos2x+1)+(1/2)sin2x+√3
=(1/2)sin2x+(√3/2)cos2x+(3/2)√3
=sin(2x+π/3)+(3/2)√3
所以最小正周期T=2π/2=π
对称轴方程2x+π/3=2kπ+π/2
x=kπ+π/12 k∈∈Z
x∈[-5π/12, π/12]
2x+π/3∈[-7π/6, -π/6]
f(x)最大=f(-5π/6)=sin(-7π/6)+(3/2)√3
=sin(5π/6)+(3/2)√3
=sin(π/6)+(3/2)√3
=1/2+(3/2)√3
f(x)最小=f(-π/6)=sin(-π/2)+(3/2)√3
=-1+(3/2)√3
所以值域f(x)∈[-1+(3/2)√3, 1/2+(3/2)√3]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询