概率数学期望问题,在线等
袋中有8个球,6个黑球、2个白球,每次从中取2个球,取出后不放回。在第三次从袋中取球时,所得白球数为z,求Ez.(E就是那个数学期望)...
袋中有8个球,6个黑球、2个白球,每次从中取2个球,取出后不放回。在第三次从袋中取球时,所得白球数为z,求Ez.(E就是那个数学期望)
展开
5个回答
展开全部
前两次后:
剩下2个白球概概率: C(4,6)/C(4,8) = 3/14 ,
在此前提下,第3次得一个白球概率: C(1,2)*C(1,2)/C(2,4) = 2/3
在此前提下,第3次得2个白球概率: C(2,2)/C(2,4) = 1/6
剩下1个白球概概率: C(1,2)*C(3,6)/C(4,8) = 4/7
在此前提下,第3次得一个白球概率: C(1,1)*C(1,3)/C(2,4) = 1/2
在此前提下,第3次得2个白球概率: 0
剩下0个白球概概率: C(2,2)*C(2,6)/C(4,8) = 3/14
在此前提下,第3次得一个白球概率: 0
在此前提下,第3次得2个白球概率: 0
于是
Ez = 3/14(2×1/6+ 1×2/3)+ 4/7(2×0+1×1/2) + 3/14(2×0+1×0)=1/2
剩下2个白球概概率: C(4,6)/C(4,8) = 3/14 ,
在此前提下,第3次得一个白球概率: C(1,2)*C(1,2)/C(2,4) = 2/3
在此前提下,第3次得2个白球概率: C(2,2)/C(2,4) = 1/6
剩下1个白球概概率: C(1,2)*C(3,6)/C(4,8) = 4/7
在此前提下,第3次得一个白球概率: C(1,1)*C(1,3)/C(2,4) = 1/2
在此前提下,第3次得2个白球概率: 0
剩下0个白球概概率: C(2,2)*C(2,6)/C(4,8) = 3/14
在此前提下,第3次得一个白球概率: 0
在此前提下,第3次得2个白球概率: 0
于是
Ez = 3/14(2×1/6+ 1×2/3)+ 4/7(2×0+1×1/2) + 3/14(2×0+1×0)=1/2
展开全部
z可能的取值为0,1,2。
前两次共取出了四个球,其可能的情形与概率分别是:
(1)四黑:P(1)=C(6,4)/C(8,4)=3/14
(2)三黑一白:P(2)=C(6,3)C(2,1)/C(8,4)=4/7
(3)二黑二白:P(3)=C(6,2)C(2,2)/C(8,4)=3/14
这样P(z=0)=P(1)C(2,2)/C(4,2)+P(2)C(3,2)/C(4,2)+P(3)=15/28
P(z=1)=P(1)C(2,1)C(2,1)/C(4,2)+P(2)C(3,1)/C(4,2)=3/7
P(z=2)=P(1)C(2,2)/C(4,2)=1/28
所以Ez=1×3/7+2×1/28=1/2
前两次共取出了四个球,其可能的情形与概率分别是:
(1)四黑:P(1)=C(6,4)/C(8,4)=3/14
(2)三黑一白:P(2)=C(6,3)C(2,1)/C(8,4)=4/7
(3)二黑二白:P(3)=C(6,2)C(2,2)/C(8,4)=3/14
这样P(z=0)=P(1)C(2,2)/C(4,2)+P(2)C(3,2)/C(4,2)+P(3)=15/28
P(z=1)=P(1)C(2,1)C(2,1)/C(4,2)+P(2)C(3,1)/C(4,2)=3/7
P(z=2)=P(1)C(2,2)/C(4,2)=1/28
所以Ez=1×3/7+2×1/28=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
z=1的概率为2/8×6/7×2=3/7,
z=2的概率为2/8×1/7=1/28,
期望Ez=1×3/7+2×1/28=1/2
z=2的概率为2/8×1/7=1/28,
期望Ez=1×3/7+2×1/28=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
0~2
追问
给点过程阿,而且答案是0.5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
55/56
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询