如图 在△ABC中 ∠C=90° D是BC边上的一点 DE⊥AB 垂足为E 若∠ADC=45° tan∠BAD=1/5 BE=3 求△ABD的面积
2个回答
展开全部
解:过点B作BF⊥AD,交AD的延长线于点F
∵∠BAF=∠DAE,∠AED=∠AFB=90°
∴RT△BAF∽RT△DAE
∴DE/BF=AE/AF,
∴DE/AE=BF/AF
又∵DE:AE=1:5
∴BF/AF=1/5
设BF=K(K>0),则AF=5K
∵∠ADC=45°,
∴∠BDF=45°,
∴FD=BF=K
∴BD=根号2倍K,AD=4K
∴DC=AC=2倍根号2K
在△ABC中,
∠C=90°,BC=3倍根号2K,AC=2倍根号2K
根据勾股定理得:AB=AC²+BC²后再开方=根号26倍K
∵∠ABC=∠DBE,
∴RT△BED∽RT△BCA
∴BE/BC=BD/BA,∴3/3倍根号2K=根号2倍K/根号26倍K。
解得:K=2分之根号26
∴S△ABD=2分之1×AD×BF=2K²=13
∵∠BAF=∠DAE,∠AED=∠AFB=90°
∴RT△BAF∽RT△DAE
∴DE/BF=AE/AF,
∴DE/AE=BF/AF
又∵DE:AE=1:5
∴BF/AF=1/5
设BF=K(K>0),则AF=5K
∵∠ADC=45°,
∴∠BDF=45°,
∴FD=BF=K
∴BD=根号2倍K,AD=4K
∴DC=AC=2倍根号2K
在△ABC中,
∠C=90°,BC=3倍根号2K,AC=2倍根号2K
根据勾股定理得:AB=AC²+BC²后再开方=根号26倍K
∵∠ABC=∠DBE,
∴RT△BED∽RT△BCA
∴BE/BC=BD/BA,∴3/3倍根号2K=根号2倍K/根号26倍K。
解得:K=2分之根号26
∴S△ABD=2分之1×AD×BF=2K²=13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询