求(x^(n-1)lnx)的n阶导数
n阶为(n-1)!/x
[x^(n-1)*lnx]'
=(n-1)x^(n-2)*lnx+x^(n-2)
显然,第二项的n-1阶导数为0,故可以忽略
二阶导数为(n-1)(n-2)x^(n-3)*lnx+(n-1)x^(n-3)+……
同样忽略第二项
……
(n-1)阶为(n-1)!*x^0*lnx+……
n阶为(n-1)!/x
任意阶导数的计算
对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
通过若干阶导数的计算可看出,cosx的高阶导数具有一种循环性,其循环规律涉及两个因素,一是总在sin x 和 cos x 之间交互转换,二是符号交互变化。
由于涉及两个变化因素,使得确定导数规律相对困难,故考虑改写各阶导数形式,以减少其间变化因素,并使其和导数阶数发生联系。
[x^(n-1)*lnx]'
=(n-1)x^(n-2)*lnx+x^(n-2)
显然,第二项的n-1阶导数为0,故可以忽略
二阶导数为(n-1)(n-2)x^(n-3)*lnx+(n-1)x^(n-3)+……
同样忽略第二项
……
(n-1)阶为(n-1)!*x^0*lnx+……
n阶为(n-1)!/x
扩展资料
对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
过程如下:
[x^(n-1)*lnx]'=(n-1)x^(n-2)*lnx+x^(n-2)
第二项的n-1阶导数为0,故可以忽略
二阶导数为(n-1)(n-2)x^(n-3)*lnx+(n-1)x^(n-3)+……
同样忽略第二项
……
(n-1)阶为(n-1)!*x^0*lnx+……
n阶为(n-1)!/x
扩展资料:
高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。因此有必要研究高阶导数特别是任意阶导数的计算方法。
对抽象函数高阶导数计算,随着求导次数的增加,中间变量的出现次数会增多,需注意识别和区分各阶求导过程中的中间变量。
显然,第二项的n-1阶导数为0,故可以忽略
二阶导数为(n-1)(n-2)x^(n-3)*lnx+(n-1)x^(n-3)+……
同样忽略第二项
……
(n-1)阶为(n-1)!*x^0*lnx+……
n阶为(n-1)!/x
=(n-1)x^(n-2)lnx +x^(n-1)/x
=(n-1)x^(n-2)lnx+x^(n-2)