已知椭圆中心在原点,焦点在X轴上,离心率为 根号2/2,过椭圆的右焦点且垂直于长轴的弦长为 根号2
①求椭圆的标准方程;②已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。...
①求椭圆的标准方程;
②已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。 展开
②已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。 展开
展开全部
1. 设椭圆方程为x^2/a^2+y^2/b^2=1 右焦点(c,0) e=c/a=√2/2 a=√2c a=√2b
x=c代入 椭圆方程 c^2/2c^2+y^2/c^2=1 y=±c*√2/2
弦长=|y1-y2|=c*√2= 根号2 c=b=1 a=√2
椭圆方程为x^2/2+y^2=1
x^2+2y^2=2
2. 直线L y=kx+b P(x1,y1) Q(x2,y2)
OP⊥OQ x1*x2+y1*y2=0
联立x^2+2y^2=2和 y=kx+b
(1+2k^2)x^2+4kbx+2b^2-2=0 x1x2=(2b^2-2)/(1+2k^2) x1+x2=-4kb/(1+2k^2)
y1*y2=k^2x1x2+kb(x1+x2)+b^2
x1*x2+y1*y2=(1+k^2)(2b^2-2)/(1+2k^2)-4k^2b^2/(1+2k^2)+b^2=0
3b^2=2+2k^2
b^2=(2+2k^2)/3 |b|=√6*√(1+k^2)/3
点O到直线L的距离=|b|/√(1+k^2)=√6/3
O到直线L的距离是为定值=√6/3
x=c代入 椭圆方程 c^2/2c^2+y^2/c^2=1 y=±c*√2/2
弦长=|y1-y2|=c*√2= 根号2 c=b=1 a=√2
椭圆方程为x^2/2+y^2=1
x^2+2y^2=2
2. 直线L y=kx+b P(x1,y1) Q(x2,y2)
OP⊥OQ x1*x2+y1*y2=0
联立x^2+2y^2=2和 y=kx+b
(1+2k^2)x^2+4kbx+2b^2-2=0 x1x2=(2b^2-2)/(1+2k^2) x1+x2=-4kb/(1+2k^2)
y1*y2=k^2x1x2+kb(x1+x2)+b^2
x1*x2+y1*y2=(1+k^2)(2b^2-2)/(1+2k^2)-4k^2b^2/(1+2k^2)+b^2=0
3b^2=2+2k^2
b^2=(2+2k^2)/3 |b|=√6*√(1+k^2)/3
点O到直线L的距离=|b|/√(1+k^2)=√6/3
O到直线L的距离是为定值=√6/3
展开全部
题知c/a=e=√2/2
a=√2c,又题知(c,√2/2)在椭圆上带入椭圆方程得c=1,b=1,a=2
方程x²/2+y²=1,
设直线方程为x=my+n带入椭圆方程得(m²+2)y²+2mny+n²-2=0
y1+y2=-2mn/(m²+2)
题知c/a=e=√2/2
a=√2c,又题知(c,√2/2)在椭圆上带入椭圆方程得c=1,b=1,a=2
方程x²/2+y²=1,
设直线方程为x=my+n带入椭圆方程得(m²+2)y²+2mny+n²-2=0
y1+y2=-2mn/(m²+2) y1y2=......
op垂直oq,所以x1x2+y1y2=0
可以求出m与n之间的关系
d=。。。(点到直线距离公式)
化简一下得定值√6/3
定值√6/3。
a=√2c,又题知(c,√2/2)在椭圆上带入椭圆方程得c=1,b=1,a=2
方程x²/2+y²=1,
设直线方程为x=my+n带入椭圆方程得(m²+2)y²+2mny+n²-2=0
y1+y2=-2mn/(m²+2)
题知c/a=e=√2/2
a=√2c,又题知(c,√2/2)在椭圆上带入椭圆方程得c=1,b=1,a=2
方程x²/2+y²=1,
设直线方程为x=my+n带入椭圆方程得(m²+2)y²+2mny+n²-2=0
y1+y2=-2mn/(m²+2) y1y2=......
op垂直oq,所以x1x2+y1y2=0
可以求出m与n之间的关系
d=。。。(点到直线距离公式)
化简一下得定值√6/3
定值√6/3。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-11-25
展开全部
①求椭圆的标准方程;
②已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。
②已知直线L与椭圆相交于P、Q两点,O为原点,且OP⊥OQ。试探究点O到直线L的距离是否为定值?若是,求出这个定值;若不是,说明理由。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询