已知BE平分∠ABC,CE平分∠ACD,且交BE于点E,求证AE平分∠PAC
2个回答
展开全部
证明:过E点作:EF垂直于BD于F,EG垂直于AC于G,EH垂直于BM于H,
则;BE平分∠ABC,有EF=EH,
CE平分∠ACD,EG=EF,
则:EH=EG,
所以:AE平分∠MAC
则;BE平分∠ABC,有EF=EH,
CE平分∠ACD,EG=EF,
则:EH=EG,
所以:AE平分∠MAC
更多追问追答
追问
求证AE平分∠PAC,你好像抄错了。
追答
仍然是△ABC,两条角平分线是AD和BE,两角平分线的交点是P,连结PC
过P,分别向AB、BC、CA作垂线,垂足依次分别是R、S、T
则根据角平分线上一点到两边的距离相等,得
PT=PR,PR=PS
∴PT=PS
又∵Rt△CPS和Rt△CPT中PT=PS,PC=PC
利用直角三角形全等判定的HL定理,得
Rt△CPS≌Rt△CPT
∴对应角∠PCS=∠PCT
即PC平分∠ACB,
∴P是△ABC三个内角平分线的交点
即三角形的内角平分线交于一点这是我以前做的,字母变了题没变
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询