如图 从一个直径是2的圆形铁皮中剪一个圆心角为90度的扇形
问题补充:1求这个扇形的面积2用这个扇形围成一个圆锥,求这个圆锥的底面半径3在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面刚好与此扇形围成一个完整的圆锥,...
问题补充:
1求这个扇形的面积
2用这个扇形围成一个圆锥,求这个圆锥的底面半径
3在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面刚好与此扇形围成一个完整的圆锥, 展开
1求这个扇形的面积
2用这个扇形围成一个圆锥,求这个圆锥的底面半径
3在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面刚好与此扇形围成一个完整的圆锥, 展开
展开全部
(1)∠BAC=90°,
∴∠BOC=180,
∴点B、O、C在一条直线上
∴BC=圆形铁片直径=2m
∴根据勾股定理AB=AC=√2m
∴扇形的半径为√2m
∴扇形的面积为(πr²)/4=√2/2πm²
(2)思路:是否能剪出只需看第三块余料的最宽处与底面直径的大小比较
解:扇形的弧长=2πr/4=(2π*√2)/4=(√2/2)*πm
则底面周长=(√2/2)*πm
则底面半径=√2/4 m
底面直径=√2/2 m
第三块余料最宽处=圆形铁片直径-扇形半径=(2-√2)
比较二者大小:(2-√2)-√2/2=(4-3√2)/4<0
所以不能剪出
(3)都成立,计算时将半径换成R即可
(1)∠BAC=90°,
∴∠BOC=180,
∴点B、O、C在一条直线上
∴BC=√2
∴AB=AC=1
∴扇形面积为1/4π
又∵圆的面积为1/2π
∴剩下的面积为1/4π
(2)扇形的弧长1/2π
则底面周长=1/2π
∴底面半径=1/4
(3)全面积=侧面积+底面积=1/4π+1/16π=5/16π
∴∠BOC=180,
∴点B、O、C在一条直线上
∴BC=圆形铁片直径=2m
∴根据勾股定理AB=AC=√2m
∴扇形的半径为√2m
∴扇形的面积为(πr²)/4=√2/2πm²
(2)思路:是否能剪出只需看第三块余料的最宽处与底面直径的大小比较
解:扇形的弧长=2πr/4=(2π*√2)/4=(√2/2)*πm
则底面周长=(√2/2)*πm
则底面半径=√2/4 m
底面直径=√2/2 m
第三块余料最宽处=圆形铁片直径-扇形半径=(2-√2)
比较二者大小:(2-√2)-√2/2=(4-3√2)/4<0
所以不能剪出
(3)都成立,计算时将半径换成R即可
(1)∠BAC=90°,
∴∠BOC=180,
∴点B、O、C在一条直线上
∴BC=√2
∴AB=AC=1
∴扇形面积为1/4π
又∵圆的面积为1/2π
∴剩下的面积为1/4π
(2)扇形的弧长1/2π
则底面周长=1/2π
∴底面半径=1/4
(3)全面积=侧面积+底面积=1/4π+1/16π=5/16π
展开全部
(1)连结BC,
∵∠A=90°,
∴BC是圆O直径,
∴ BC=2,
∴AB=AC=√2,
∴S扇形=π/2
(2)连结AO,并延长,交弧BC与D,交圆O于E,
∵AE=2,AD=AB=√2,
∴DE=2-√2,
以DE为直径的圆的周长=(2-√2)π,
而弧BC的长度=√2π/2,
∵(2-√2)π<√2π/2,
且3块余料中只有以ED为直径所得的圆的周长最大,
∴无法围成。
(3)(2)中的结论仍然成立,只需将原半径1变为R,
最后可得(2-√2)πR<√2πR/2,同理,无法围成。
∵∠A=90°,
∴BC是圆O直径,
∴ BC=2,
∴AB=AC=√2,
∴S扇形=π/2
(2)连结AO,并延长,交弧BC与D,交圆O于E,
∵AE=2,AD=AB=√2,
∴DE=2-√2,
以DE为直径的圆的周长=(2-√2)π,
而弧BC的长度=√2π/2,
∵(2-√2)π<√2π/2,
且3块余料中只有以ED为直径所得的圆的周长最大,
∴无法围成。
(3)(2)中的结论仍然成立,只需将原半径1变为R,
最后可得(2-√2)πR<√2πR/2,同理,无法围成。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)连接BC、AO,并延长AO交⊙O于D,交弧BC于点E,
∵扇形的圆心角为90°,
∴BC为⊙O直径,AB=AC,
∴AO⊥BC,(1分)
在Rt△AOB中,∠AOB=90°,
由勾股定理得:AB=
AO2+BO2=
2(AB>0),(2分)
∴s=
nπR2360=
π2;(3分)
(2)由(1)可知:DE=AD-AE=AD-AB=2-2,
∵弧BC的长l=
nπR180=
2π2,
∴2πr=
2π2,
∴2r=
22,(4分)
而2-
2<
22;
∴不能从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥.(5分)
∵扇形的圆心角为90°,
∴BC为⊙O直径,AB=AC,
∴AO⊥BC,(1分)
在Rt△AOB中,∠AOB=90°,
由勾股定理得:AB=
AO2+BO2=
2(AB>0),(2分)
∴s=
nπR2360=
π2;(3分)
(2)由(1)可知:DE=AD-AE=AD-AB=2-2,
∵弧BC的长l=
nπR180=
2π2,
∴2πr=
2π2,
∴2r=
22,(4分)
而2-
2<
22;
∴不能从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥.(5分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、面积=πr^2/4=π/4
2、圆锥的底周长=πd/4=π/2
所以底半径=【π/2】/π/2=1/4
3、没图不好做
2、圆锥的底周长=πd/4=π/2
所以底半径=【π/2】/π/2=1/4
3、没图不好做
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如图,从一直经是2的圆形铁皮中剪下一个圆心角为90度的扇形,求这个扇形的面积
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询