
(2cos²x-1)/2tan(π/4-x)sin²(π/4+x)
2个回答
展开全部
因为(π/4-x)+(π/4+x)=π/2,所以tan(π/4-x)=cot(π/4+x)
(2cos²x-1)/2tan(π/4-x)sin²(π/4+x)
=sin2x/[2cot(π/4+x)sin²(π/4+x)]
=sin2x/{[2cos(π/4+x)/sin(π/4+x)]sin²(π/4+x)}
=sin2x/[2sin(π/4+x)cos(π/4+x)]
=sin2x/sin(π/2+2x)
=sin2x/cos2x
=tan2x
(2cos²x-1)/2tan(π/4-x)sin²(π/4+x)
=sin2x/[2cot(π/4+x)sin²(π/4+x)]
=sin2x/{[2cos(π/4+x)/sin(π/4+x)]sin²(π/4+x)}
=sin2x/[2sin(π/4+x)cos(π/4+x)]
=sin2x/sin(π/2+2x)
=sin2x/cos2x
=tan2x
追问
没教过cot,所以看不懂。
追答
cotx=1/tanx
(2cos²x-1)/2tan(π/4-x)sin²(π/4+x)
=cos2x/[2cot(π/4+x)sin²(π/4+x)]
=cos2x/{[2cos(π/4+x)/sin(π/4+x)]sin²(π/4+x)}
=cos2x/[2sin(π/4+x)cos(π/4+x)]
=cos2x/sin(π/2+2x)
=cos2x/cos2x
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询