已知AB,AC为圆O的弦,E,F分别为弧AB,弧AC中点,EF分别交AB,AC于M,N,求证:三角形AMN为等腰三角形

sjx2589
2011-11-28 · TA获得超过274个赞
知道小有建树答主
回答量:402
采纳率:0%
帮助的人:272万
展开全部
连接MC,BN,AM,AN.E,是弧AB中点,角AFE=角EFB=角EAM.F是弧AC中点。角AEF=角CEF=角EAB.角AMN=角AEM+角MAE. 角ANM=角NAF+角AFN.所以,角AMN=角ANM。三角形AMN为等腰三角形。
754375038
2011-11-30 · TA获得超过757个赞
知道答主
回答量:175
采纳率:0%
帮助的人:97.5万
展开全部
弧AB,弧AC不相等,也就是弦AB,AC不相等还证明神马,少条件
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式