已知函数f(x)=lnx+a/(x+1)(a属于R),求证ln(n+1)>1/3+1/5+1/7+...+1/(2n +1)

cumteric8001
2011-11-30 · TA获得超过1万个赞
知道大有可为答主
回答量:2148
采纳率:92%
帮助的人:1136万
展开全部
证明:考虑函数f(x)=ln(1+1/x)-1/(2x+1),x>0。显然当x->+∞时,f(x)=0。
而f'(x)=-1/[n*(n+1)]+2/[(2n+1)^2]=1/(2n^2+2n+1/2)-1/(n^2+n)=-(n^2+n+1/2)/[(2n^2+2n+1/2)*(n^2+n)]=-[(n+1/2)^2+1/4]/[(2n^2+2n+1/2)*(n^2+n)]<0,故f(x)在x>0时为单调递减函数,则必有x>0时f(x)=ln(1+1/x)-1/(2x+1)>0,于是有ln(1+1/x)>1/(2x+1),也即当x>0时,有
ln(x+1)-lnx>1/(2x+1)成立。于是
ln2-ln1>1/3
ln3-ln2>1/5
ln4-ln3>1/7
……
lnn-ln(n-1)>1/(2n-1)
ln(n+1)-lnn>1/(2n+1)
前述不等式左右两边分别相加,便得
ln(n+1)>1/3+1/5+1/7+…+1/(2n +1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式