已知a,b,c均为正数,证明: a2+b2+c2+(1a+1b+1c)2≥6 3,并确定a,b,c为何值时,等号成立.

百度网友8b96c90
2011-12-01 · 超过17用户采纳过TA的回答
知道答主
回答量:30
采纳率:0%
帮助的人:69.7万
展开全部
证明:
(证法一)
因为a,b,c均为正数,由平均值不等式得 {a2+b2+c2≥3(abc)231a+1b+1c≥3(abc)-13①
所以 (1a+1b+1c)2≥9(abc)-23②(
故 a2+b2+c2+(1a+1b+1c)2≥3(abc)23+9(abc)-23.
又 3(abc)23+9(abc)-23≥227=63③
所以原不等式成立
当且仅当a=b=c时,①式和②式等号成立.当且仅当 3(abc)23=9(abc)-23时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立.
(证法二)
因为a,b,c均为正数,由基本不等式得 {a2+b2≥2abb2+c2≥2bcc2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①
同理 1a2+1b2+1c2≥1ab+1bc+1ac②
故 a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等式成立.
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c= 314时,原式等号成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式