求解高二数学圆锥曲线的题
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(√3,0)(1)求双曲线C的方程(2)若直线:y=kx+m(k不等于0,m不等于0)与双曲线C交于不同的两点M,N...
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(√ 3,0)
(1)求双曲线C的方程
(2)若直线:y=kx+m(k不等于0,m不等于0)与双曲线C交于不同的两点M,N,且线段MN 的垂直平分线过点A(0,-1),求实数m的范围 展开
(1)求双曲线C的方程
(2)若直线:y=kx+m(k不等于0,m不等于0)与双曲线C交于不同的两点M,N,且线段MN 的垂直平分线过点A(0,-1),求实数m的范围 展开
1个回答
展开全部
您好!
解:
(1)由题意知a=√ 3,c=2。焦点在x轴上
则b^2=c^2-a^2=1
所以双曲线的方程为x^2/3-y^2=1
(2)
NM的斜率=k,则垂直平分线的斜率=-1/k
设N、M两点为(x1,y1),(x2,y2),设NM中点O为(a,b),
可设平分线为L:y=-x/k+b2
因L经过(0,-1)得b2=-1
L为y=-x/k-1
因(x1^2-x2^2)/3=(y1^2+1)-(y2^2+1)
(x1+x2)/3(y1+y2)=(y1-y2)/(x1-x2)=k
则a/3b=k,
又O点也在直线L上则b=-a/k-1(将k=a/3b代入)
得b=-1/4,k=-4a/3
显然O点也在直线y=kx+m上,则b=ka+m
则-1/4=-3k^2/4+m
3k^2=4m+1
将y=kx+m代入双曲线方程消去y
x^2/3-k^2x^2-2kmx-m^2-1=0要使方程有两实根
则4m^2k^2-4(-m^2-1)(1/3-k^2)>0
m^2/3-k^2+1/3>0
m^2+1>3k^2=4m+1
解得m>4或m<0
解:
(1)由题意知a=√ 3,c=2。焦点在x轴上
则b^2=c^2-a^2=1
所以双曲线的方程为x^2/3-y^2=1
(2)
NM的斜率=k,则垂直平分线的斜率=-1/k
设N、M两点为(x1,y1),(x2,y2),设NM中点O为(a,b),
可设平分线为L:y=-x/k+b2
因L经过(0,-1)得b2=-1
L为y=-x/k-1
因(x1^2-x2^2)/3=(y1^2+1)-(y2^2+1)
(x1+x2)/3(y1+y2)=(y1-y2)/(x1-x2)=k
则a/3b=k,
又O点也在直线L上则b=-a/k-1(将k=a/3b代入)
得b=-1/4,k=-4a/3
显然O点也在直线y=kx+m上,则b=ka+m
则-1/4=-3k^2/4+m
3k^2=4m+1
将y=kx+m代入双曲线方程消去y
x^2/3-k^2x^2-2kmx-m^2-1=0要使方程有两实根
则4m^2k^2-4(-m^2-1)(1/3-k^2)>0
m^2/3-k^2+1/3>0
m^2+1>3k^2=4m+1
解得m>4或m<0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询