求与椭圆9分之x的平方+4分之y的平方=1有相同焦点,并且经过点P(3,-2)的椭圆的标准方程
2个回答
展开全部
解:由椭圆方程9分之x²+4分之y²=1可知其焦点在x轴上且c²=9-4=5,即c=√5
则所求椭圆的焦点坐标为F1(√5,0)、F2(-√5,0)
又该椭圆经过点P(3,-2),则由椭圆的定义可得:
|PF1|+|PF2|=2a
即2a=√[(3-√5)²+4] +√[(3+√5)²+4]
=√(18-6√5) +√(18+6√5)
=√(√15-√3)² +√(√15+√3)²
=√15-√3+√15+√3
=2√15
得a=√15
则b²=a²-c²=15-5=10
所以所求椭圆的标准方程为:x²/15 +y²/10=1
则所求椭圆的焦点坐标为F1(√5,0)、F2(-√5,0)
又该椭圆经过点P(3,-2),则由椭圆的定义可得:
|PF1|+|PF2|=2a
即2a=√[(3-√5)²+4] +√[(3+√5)²+4]
=√(18-6√5) +√(18+6√5)
=√(√15-√3)² +√(√15+√3)²
=√15-√3+√15+√3
=2√15
得a=√15
则b²=a²-c²=15-5=10
所以所求椭圆的标准方程为:x²/15 +y²/10=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |