已知:等边三角形ABC.(1)P为△ABC内任一点,自点P向三边作垂线PD、PE、PF,点D、E、F为垂足
已知:等边三角形ABC.(1)P为△ABC内任一点,自点P向三边作垂线PD、PE、PF,点D、E、F为垂足.求证:PD+PE+PF等于定值;(2)若点P在△ABC外时,情...
已知:等边三角形ABC.(1)P为△ABC内任一点,自点P向三边作垂线PD、PE、PF,点D、E、F为垂足.求证:PD+PE+PF等于定值;(2)若点P在△ABC外时,情况如何?
展开
展开全部
连接PA,PB,PC
则△ABC被分为3个小三角形,△PAB,△PBC,△PCA
△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积
设△ABC的边长为a,则任意一边上的高h是确定的(h=√3a/2)
所以 a*h/2=*a*PD/2+a*PE/2+a*PF/2
所以 PD+PE+PF=h,是一个不变的值,等于边长的√3/2(即高)
若P为三角形外一点,则AM=PD+PE-PF(总之三角形外一点到两腰垂线之和减这点到底边垂线等于底边上的高)
则△ABC被分为3个小三角形,△PAB,△PBC,△PCA
△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积
设△ABC的边长为a,则任意一边上的高h是确定的(h=√3a/2)
所以 a*h/2=*a*PD/2+a*PE/2+a*PF/2
所以 PD+PE+PF=h,是一个不变的值,等于边长的√3/2(即高)
若P为三角形外一点,则AM=PD+PE-PF(总之三角形外一点到两腰垂线之和减这点到底边垂线等于底边上的高)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接PA,PB,PC
则△ABC被分为3个小三角形,△PAB,△PBC,△PCA
△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积
设△ABC的边长为a,则任意一边上的高h是确定的(h=√3a/2)
所以 a*h/2=*a*PD/2+a*PE/2+a*PF/2
所以 PD+PE+PF=h,是一个不变的值,等于边长的√3/2(即高)
若P为三角形外一点,则AM=PD+PE-PF(总之三角形外一点到两腰垂线之和减这点到底边垂线等于底边上的高)
连接PA,PB,PC,
可知
三角形PBC面积=PF*BC*0.5
三角形PBA面积=PD*BA*0.5
三角形PAC面积=PE*AC*0.5
S三角形PBC+S三角形PBA-S三角形PAC=S等边三角形
PF*BC*0.5+PD*BA*0.5-PE*AC*0.5=S等边三角形
(PF+PD-PE)*边长*0.5=S等边三角形=√3/4*边长
所以PF+PD-PE=√3/2也是定值
则△ABC被分为3个小三角形,△PAB,△PBC,△PCA
△ABC的面积=△PAB的面积+△PBC的面积+△PCA的面积
设△ABC的边长为a,则任意一边上的高h是确定的(h=√3a/2)
所以 a*h/2=*a*PD/2+a*PE/2+a*PF/2
所以 PD+PE+PF=h,是一个不变的值,等于边长的√3/2(即高)
若P为三角形外一点,则AM=PD+PE-PF(总之三角形外一点到两腰垂线之和减这点到底边垂线等于底边上的高)
连接PA,PB,PC,
可知
三角形PBC面积=PF*BC*0.5
三角形PBA面积=PD*BA*0.5
三角形PAC面积=PE*AC*0.5
S三角形PBC+S三角形PBA-S三角形PAC=S等边三角形
PF*BC*0.5+PD*BA*0.5-PE*AC*0.5=S等边三角形
(PF+PD-PE)*边长*0.5=S等边三角形=√3/4*边长
所以PF+PD-PE=√3/2也是定值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询