用定义证明:函数f(x)=x+x分之1在区间[1,正无穷)上是增函数

北极之远
推荐于2016-12-01 · TA获得超过2435个赞
知道小有建树答主
回答量:553
采纳率:100%
帮助的人:663万
展开全部
解:设在[1,﹢∝)的任意两点x1和x2,x1<x2
f(x1)=x1+1/x1 f(x2)=x2+1/x2
f(x1)-f(x2)=x1-x2+1/x1-1/x2=(x2-x1)[1/(x1·x2)-1]
因为x1,x2≧1 则1/x1≤0 1/x2≤0 1/(x1·x2)-1<0
则f(x1)-f(x2)<0
又x1<x2
因此f(x)在该区间内是增函数
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
2010zzqczb
2011-12-10 · TA获得超过5.2万个赞
知道大有可为答主
回答量:2.1万
采纳率:80%
帮助的人:6274万
展开全部
设1<=x1<x2,则△x=x2-x1>0
所以△y=(x2+1/x2)-(x1+1/x1)=(x2-x1)+(1/x2-1/x1)=(x2-x1)+(x1-x2)/(x1x2)=(x2-x1)(1-1/(x1x2))
因为1<=x1<x2,所以x1x2>1,从而1/(x1x2)<1,所以1-1/x1x2>0,又x2-x1>0,所以△y>0
故函数f(x)=x+x分之1在区间[1,正无穷)上是增函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shsycxj
2011-12-10 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2175
采纳率:0%
帮助的人:1092万
展开全部
设1≤x1<x2≤﹢∞
∵f(x1)-f(x2)=x1+1/x1-x2-1/x2=(x1-x2)+(x2-x1)/(x1x2)
=(x2-x1)[1/(x1x2)-1]=(x2-x1)(1-x1x2)/(x1x2)
∵1≤x1<x2 ∴x1x2>1 x2-x1>0 1-x1x2<0
∴f(x1)-f(x2)<0 即 f(x1)<f(x2)
∴函数f(x)=x+1/x在区间[1,﹢∞)上是增函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hqbdzh
2011-12-10 · TA获得超过183个赞
知道答主
回答量:116
采纳率:0%
帮助的人:87.2万
展开全部
证明:
设x2>x1>=1,则f(x2)-f(x1)=x2+1/x2-x1-1/x1=(x2-x1)(1-1/x1*x2),由条件x2>x1>=1,即x1x2>1,1-1/x1*x2>0,x2-x1>0,所以(x2-x1)(1-1/x1*x2)>0,即f(x2)>f(x1),故f(x)在区间[1,正无穷)上是增函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式