已知A、B、C三点不共线,对平面ABC外的任何一点O,若点M满足向量OM=1/3(向量OA+向量OB+向量OC)

已知A、B、C三点不共线,对平面ABC外的任何一点O,若点M满足向量OM=1/3(向量OA+向量OB+向量OC)(1)判断向量MA、向量MB、向量MC三个向量是否共面(2... 已知A、B、C三点不共线,对平面ABC外的任何一点O,若点M满足向量OM=1/3(向量OA+向量OB+向量OC)
(1)判断向量MA、向量MB、向量MC三个向量是否共面
(2)判断点M是否在平面ABC内
展开
lijiyou107
2011-12-11 · 超过15用户采纳过TA的回答
知道答主
回答量:38
采纳率:100%
帮助的人:24万
展开全部
1.MA,MB,MC是共面的
只要证明MA+MB+MC=0
MA=OA-OM
MB=OB-OM
MC=OC-OM
MA+MB+MC=OA+OB+OC-3OM=0
其实第一问可以判断ABCM是共面的,第二问就要证明M点要在ABC 之内
如果M点在外, 任一两个向量的和都不可能和第3个向量方向相反
所以这个M点在内
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式