设函数f(x),g(x)在点x=0的某个领域内连续,且limx->0 g(x)/x=-1,limx->0 f(x)/{g(x)的平方}=2
展开全部
证明:由(x→0)limg(x)/x=-1 (极限为-1,分母趋于0,则分子必趋于0)
可知(x→0)limg(x)=0 即g(0)=0
于是(x→0)lim[g(x)-g(0)]/(x-0)=-1
则g(x)在该邻域内可导且g'(0)=-1
(x→0)limf(x)/g²(x)=2
因为(x→0)limg²(x)=0
则(x→0)limf(x)=0
f(0)=0
对(x→0)limf(x)/g²(x)=2进行变形
(x→0)limf(x)/g²(x)
=(x→0)lim[f(x)/x][x²/g(x)]
=(x→0)lim[f(x)/x²]•(x→0)limx²/g(x) (变成两个极限之积,并对右边的极限用洛必达法则)
=(x→0)lim[f(x)/x²]•(x→0)limx/g(x)•(x→0)lim1/g'(x)
=(x→0)lim[f(x)/x²]•(-1)•(-1)
=2
因此f(x)=2x²+o(x)
于是可以得到(x→0)limf(x)/x=0
即f'(0)=0
即证
可知(x→0)limg(x)=0 即g(0)=0
于是(x→0)lim[g(x)-g(0)]/(x-0)=-1
则g(x)在该邻域内可导且g'(0)=-1
(x→0)limf(x)/g²(x)=2
因为(x→0)limg²(x)=0
则(x→0)limf(x)=0
f(0)=0
对(x→0)limf(x)/g²(x)=2进行变形
(x→0)limf(x)/g²(x)
=(x→0)lim[f(x)/x][x²/g(x)]
=(x→0)lim[f(x)/x²]•(x→0)limx²/g(x) (变成两个极限之积,并对右边的极限用洛必达法则)
=(x→0)lim[f(x)/x²]•(x→0)limx/g(x)•(x→0)lim1/g'(x)
=(x→0)lim[f(x)/x²]•(-1)•(-1)
=2
因此f(x)=2x²+o(x)
于是可以得到(x→0)limf(x)/x=0
即f'(0)=0
即证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询