![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知函数f(x)=4cos·sin(x+(π/6)) (1)求f(x)的最小正周期及最大值 (2)求f(x)的单调递增区间
1个回答
展开全部
f(x)=4cosx*sin(x+π/6)
=4cosx(sinx*√3/2+cosx*1/2)
=2√3sinxcosx+2(cosx)^2
=√3sin2x+cos2x+1
=2sin(2x+π/6)+1
f(x)的最小正周期 T =π
最大值为2+1=3
2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z.
kπ-π/3≤x≤kπ+π/6,k∈Z.
f(x)的单调递增区间是[kπ-π/3, kπ+π/6],k∈Z.
=4cosx(sinx*√3/2+cosx*1/2)
=2√3sinxcosx+2(cosx)^2
=√3sin2x+cos2x+1
=2sin(2x+π/6)+1
f(x)的最小正周期 T =π
最大值为2+1=3
2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z.
kπ-π/3≤x≤kπ+π/6,k∈Z.
f(x)的单调递增区间是[kπ-π/3, kπ+π/6],k∈Z.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询