求当x趋近于正无穷大时lim(x+1/x-2)^X的极限值?
3个回答
展开全部
解:x→+∞lim[x+1/(x-2)]^x=x→+∞lim[(x²-2x+1)/(x-2)]^x=x→+∞lim[(x- 2+1/x)/(1-2/x)]^x=+∞
其中分母(1-2/x)→1,分子(x-2+1/x)→+∞.
如果分子是(x+1),则:
x→+∞lim[(x+1)/(x-2)]^x=x→+∞lim[1+3/(x-2)]^x
=x→+∞lim{[1+3/(x-2)]^[(x-2)/3]}³{[1+3/(x-2)]²}
=x→+∞lim{[1+3/(x-2)]^[(x-2)/3]}³{x→+∞lim[1+3/(x-2)]²}=e³
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
展开全部
求当x趋近于正无穷大时lim[x+1/(x-2)]^X的极限值?
解:x→+∞lim[x+1/(x-2)]^x=x→+∞lim[(x²-2x+1)/(x-2)]^x=x→+∞lim[(x- 2+1/x)/(1-2/x)]^x=+∞
其中分母(1-2/x)→1,分子(x-2+1/x)→+∞.
如果分子是(x+1),则:
x→+∞lim[(x+1)/(x-2)]^x=x→+∞lim[1+3/(x-2)]^x
=x→+∞lim{[1+3/(x-2)]^[(x-2)/3]}³{[1+3/(x-2)]²}
=x→+∞lim{[1+3/(x-2)]^[(x-2)/3]}³{x→+∞lim[1+3/(x-2)]²}=e³
解:x→+∞lim[x+1/(x-2)]^x=x→+∞lim[(x²-2x+1)/(x-2)]^x=x→+∞lim[(x- 2+1/x)/(1-2/x)]^x=+∞
其中分母(1-2/x)→1,分子(x-2+1/x)→+∞.
如果分子是(x+1),则:
x→+∞lim[(x+1)/(x-2)]^x=x→+∞lim[1+3/(x-2)]^x
=x→+∞lim{[1+3/(x-2)]^[(x-2)/3]}³{[1+3/(x-2)]²}
=x→+∞lim{[1+3/(x-2)]^[(x-2)/3]}³{x→+∞lim[1+3/(x-2)]²}=e³
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(x+1/x-2)^X为-1/2
更多追问追答
追问
可以发一下计算过程吗
追答
lim(x+1/x-2)^X
=lim(无穷大+1/无穷大-2)^无穷大
都是趋于无穷大,所以可以得出lim(-1/2)^=-1/2
这个用数字不好裂解出来,慢慢体会一下就懂!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询