将函数f(x)=1/(x^2-2x-3) 展成x的幂级数,并写出收敛域
展开全部
f(x)=1/(x²-2x-3)
=1/[(x+1)(x-3)]
=1/4 [1/(x-3)-1/(x+1)]
=1/4 [-1/3·1/(1-x/3) - 1/(1+x)]
因为1/(1-x/3)=∑<n=0到∞> (x/3)^n (-3<x<3)
1/(1+x)=∑<n=0到∞> (-x)^n (-1<x<1)
则f(x)=1/4 [-1/3 ·∑<n=0到∞> (x/3)^n + ∑<n=0到∞> (-x)^n ] (-1<x<1)
=-1/4 ∑<n=0到∞>[1/3^(n+1) + (-1)^(n+1)]x^n (-1<x<1)
=1/[(x+1)(x-3)]
=1/4 [1/(x-3)-1/(x+1)]
=1/4 [-1/3·1/(1-x/3) - 1/(1+x)]
因为1/(1-x/3)=∑<n=0到∞> (x/3)^n (-3<x<3)
1/(1+x)=∑<n=0到∞> (-x)^n (-1<x<1)
则f(x)=1/4 [-1/3 ·∑<n=0到∞> (x/3)^n + ∑<n=0到∞> (-x)^n ] (-1<x<1)
=-1/4 ∑<n=0到∞>[1/3^(n+1) + (-1)^(n+1)]x^n (-1<x<1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好!
f(x) = 1/(x² -2x+3) = 1/[(x-3)(x+1)] = -1/4 [1/(x+1) + 1/(3-x) ]
1/(x+1) = ∑ (-1)^(n-1) x^(n-1) ,-1<x<1
1/(3-x) = 1/3 * 1/[ 1+ (-x/3)]
= 1/3 ∑ (-1)^(n-1) (-x/3)^(n-1)
= ∑ x^(n-1) / 3^n
-1< -x/3 <1 即 -3 < x < 3
f(x) = - 1/4 ∑ [ (-1)^(n-1) + 1/3^n ] x^(n-1) ,-1 < x < 1
f(x) = 1/(x² -2x+3) = 1/[(x-3)(x+1)] = -1/4 [1/(x+1) + 1/(3-x) ]
1/(x+1) = ∑ (-1)^(n-1) x^(n-1) ,-1<x<1
1/(3-x) = 1/3 * 1/[ 1+ (-x/3)]
= 1/3 ∑ (-1)^(n-1) (-x/3)^(n-1)
= ∑ x^(n-1) / 3^n
-1< -x/3 <1 即 -3 < x < 3
f(x) = - 1/4 ∑ [ (-1)^(n-1) + 1/3^n ] x^(n-1) ,-1 < x < 1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询