如图,在梯形ABCD中,AD‖BC,E为CD中点,EF‖AB交BC于点F,EF=EC,连接DF. (1)试说明梯形ABCD是等腰梯形
(2)若AD=1,BC=3,DC=根号2,试判断△DCF的形状(3)在条件(2)下,射线BC上是否存在一点P(不与点F重合),使△PCD是等腰三角形。若存在,请直接写出P...
(2)若AD=1, BC=3, DC=根号2,试判断△DCF的形状
(3)在条件(2)下,射线BC上是否存在一点P(不与点F重合),使△PCD是等腰三角形。若存在,请直接写出PB点长;若存在,请说明理由 展开
(3)在条件(2)下,射线BC上是否存在一点P(不与点F重合),使△PCD是等腰三角形。若存在,请直接写出PB点长;若存在,请说明理由 展开
展开全部
:解:(1)证明:∵EF=EC,
∴∠EFC=∠ECF,
∵EF∥AB,
∴∠B=∠EFC,
∴∠B=∠ECF,∴梯形ABCD是等腰梯形;
(2)△DCF是等腰直角三角形,
证明:∵DE=EC,EF=EC,∴EF=12CD,
∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),
∵梯形ABCD是等腰梯形,
∴CF=12(BC-AD)=1,
∵DC=2,
∴由勾股定理得:DF=1,
∴△DCF是等腰直角三角形;
(3)共四种情况:
∵DF⊥BC,
∴当PF=CF时,△PCD是等腰三角形,
即PF=1,
∴PB=1;
当P与F重合时,△PCD是等腰三角形,
∴PB=2;
当PC=CD=2(P在点C的左侧)时,△PCD是等腰三角形,
∴PB=3-2;
当PC=CD=2(P在点C的右侧)时,△PCD是等腰三角形,
∴PB=3+2.
故共四种情况:PB=1,PB=2,PB=3-2,PB=3+2.(每个1分)
∴∠EFC=∠ECF,
∵EF∥AB,
∴∠B=∠EFC,
∴∠B=∠ECF,∴梯形ABCD是等腰梯形;
(2)△DCF是等腰直角三角形,
证明:∵DE=EC,EF=EC,∴EF=12CD,
∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),
∵梯形ABCD是等腰梯形,
∴CF=12(BC-AD)=1,
∵DC=2,
∴由勾股定理得:DF=1,
∴△DCF是等腰直角三角形;
(3)共四种情况:
∵DF⊥BC,
∴当PF=CF时,△PCD是等腰三角形,
即PF=1,
∴PB=1;
当P与F重合时,△PCD是等腰三角形,
∴PB=2;
当PC=CD=2(P在点C的左侧)时,△PCD是等腰三角形,
∴PB=3-2;
当PC=CD=2(P在点C的右侧)时,△PCD是等腰三角形,
∴PB=3+2.
故共四种情况:PB=1,PB=2,PB=3-2,PB=3+2.(每个1分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连接DF.
(1)试说明梯形ABCD是等腰梯形;
(2)若AD=1,BC=3,DC=2,试判断△DCF的形状;
(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.
考点:等腰梯形的判定;等腰三角形的判定.
分析:(1)根据在同一底上的两个角相等的梯形是等腰梯形进行判断;
(2)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,
(3)分四种情况,分别计算.
解答:解:(1)证明:∵EF=EC,
∴∠EFC=∠ECF,
∵EF∥AB,
∴∠B=∠EFC,
∴∠B=∠ECF,∴梯形ABCD是等腰梯形;
(2)△DCF是等腰直角三角形,
证明:∵DE=EC,EF=EC,∴EF=12CD,
∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),
∵梯形ABCD是等腰梯形,
∴CF=12(BC-AD)=1,
∵DC=2,
∴由勾股定理得:DF=1,
∴△DCF是等腰直角三角形;
(3)共四种情况:
∵DF⊥BC,
∴当PF=CF时,△PCD是等腰三角形,
即PF=1,
∴PB=1;
当P与F重合时,△PCD是等腰三角形,
∴PB=2;
当PC=CD=2(P在点C的左侧)时,△PCD是等腰三角形,
∴PB=3-2;
当PC=CD=2(P在点C的右侧)时,△PCD是等腰三角形,
∴PB=3+2.
故共四种情况:PB=1,PB=2,PB=3-2,PB=3+2.(每个1分)
点评:考查等腰梯形的判定,直角三角形的判定以及等腰三角形的判定.
(1)试说明梯形ABCD是等腰梯形;
(2)若AD=1,BC=3,DC=2,试判断△DCF的形状;
(3)在条件(2)下,射线BC上是否存在一点P,使△PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由.
考点:等腰梯形的判定;等腰三角形的判定.
分析:(1)根据在同一底上的两个角相等的梯形是等腰梯形进行判断;
(2)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,
(3)分四种情况,分别计算.
解答:解:(1)证明:∵EF=EC,
∴∠EFC=∠ECF,
∵EF∥AB,
∴∠B=∠EFC,
∴∠B=∠ECF,∴梯形ABCD是等腰梯形;
(2)△DCF是等腰直角三角形,
证明:∵DE=EC,EF=EC,∴EF=12CD,
∴△CDF是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),
∵梯形ABCD是等腰梯形,
∴CF=12(BC-AD)=1,
∵DC=2,
∴由勾股定理得:DF=1,
∴△DCF是等腰直角三角形;
(3)共四种情况:
∵DF⊥BC,
∴当PF=CF时,△PCD是等腰三角形,
即PF=1,
∴PB=1;
当P与F重合时,△PCD是等腰三角形,
∴PB=2;
当PC=CD=2(P在点C的左侧)时,△PCD是等腰三角形,
∴PB=3-2;
当PC=CD=2(P在点C的右侧)时,△PCD是等腰三角形,
∴PB=3+2.
故共四种情况:PB=1,PB=2,PB=3-2,PB=3+2.(每个1分)
点评:考查等腰梯形的判定,直角三角形的判定以及等腰三角形的判定.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询