四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函
如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是...
如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是
展开
4个回答
展开全部
法1 :
∵ AC=4BC
∴ 设 BC = a (a > 0)
则 AC = 4a
过点D 作 DE ⊥ AC 于 点E
∵ ∠BAD = 90°
∴ ∠BAC + ∠DAE = 90° --------------------- ①
∵ ∠ACB = 90°
∴ ∠BAC + ∠B = 90° ---------------------- ②
由 ① ② 得: ∠DAE = ∠B
在 Rt△DAE 和 Rt△ABC 中
∠DAE = ∠B (已证)
∠AED = ∠BCA = 90°
AD = BA (已知)
∴ Rt△DAE ≌ Rt△ABC (AAS)
∴ AE = BC = a 且 DE = AC = 4a (全等三角形对应边相等)
则 EC = AC -- AE
= 4a -- a
= 3a
在 Rt△DEC 中,DE = 4a,EC = 3a,
由勾股定理求得 DC = 5a,即:X = 5a
∴ a = X / 5
Rt△ABC的面积 S1 = (1/2)× BC × AC
= (1/2)× a × 4a
= 2 ×(a²)
△ADC的面积 S2 = (1/2)× AC × DE
= (1/2)× 4a × 4a
= 8 ×(a²)
∴ 四边形ABCD的面积 y = S1 + S2
= 2 ×(a²) + 8 ×(a²)
= 10 ×(a²) (把a = X / 5 代入得)
= 10 × [(X / 5)² ]
= 10 × [ X²/ 25 ]
= (2/5)× (X²)
= 2X²/ 5
∴ y与x的函数关系式是: y = 2X²/ 5
--------------------------------------------------------------------------------
法2 :
设BC=a, 角ABC=p
则AC=4a, AB=AD=√17a, 角DAC=p
sinp=4/√17, cosp=1/√17
面积 y=1/2*a*4a+1/2* 4a*√17a* sinp=2a²+8a²=10a²
余弦定理:x²=(4a)²+17a²-1/2* 4a*√17a cosp=33a²-8a²=25a²
两式相除,所以有:y=2x²/5
----------------------------------------------------------------
转自网络,仅供参考
∵ AC=4BC
∴ 设 BC = a (a > 0)
则 AC = 4a
过点D 作 DE ⊥ AC 于 点E
∵ ∠BAD = 90°
∴ ∠BAC + ∠DAE = 90° --------------------- ①
∵ ∠ACB = 90°
∴ ∠BAC + ∠B = 90° ---------------------- ②
由 ① ② 得: ∠DAE = ∠B
在 Rt△DAE 和 Rt△ABC 中
∠DAE = ∠B (已证)
∠AED = ∠BCA = 90°
AD = BA (已知)
∴ Rt△DAE ≌ Rt△ABC (AAS)
∴ AE = BC = a 且 DE = AC = 4a (全等三角形对应边相等)
则 EC = AC -- AE
= 4a -- a
= 3a
在 Rt△DEC 中,DE = 4a,EC = 3a,
由勾股定理求得 DC = 5a,即:X = 5a
∴ a = X / 5
Rt△ABC的面积 S1 = (1/2)× BC × AC
= (1/2)× a × 4a
= 2 ×(a²)
△ADC的面积 S2 = (1/2)× AC × DE
= (1/2)× 4a × 4a
= 8 ×(a²)
∴ 四边形ABCD的面积 y = S1 + S2
= 2 ×(a²) + 8 ×(a²)
= 10 ×(a²) (把a = X / 5 代入得)
= 10 × [(X / 5)² ]
= 10 × [ X²/ 25 ]
= (2/5)× (X²)
= 2X²/ 5
∴ y与x的函数关系式是: y = 2X²/ 5
--------------------------------------------------------------------------------
法2 :
设BC=a, 角ABC=p
则AC=4a, AB=AD=√17a, 角DAC=p
sinp=4/√17, cosp=1/√17
面积 y=1/2*a*4a+1/2* 4a*√17a* sinp=2a²+8a²=10a²
余弦定理:x²=(4a)²+17a²-1/2* 4a*√17a cosp=33a²-8a²=25a²
两式相除,所以有:y=2x²/5
----------------------------------------------------------------
转自网络,仅供参考
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵ AC=4BC
∴ 设 BC = a (a > 0)
则 AC = 4a
过点D 作 DE ⊥ AC 于 点E
∵ ∠BAD = 90°
∴ ∠BAC + ∠DAE = 90° --------------------- ①
∵ ∠ACB = 90°
∴ ∠BAC + ∠B = 90° ---------------------- ②
由 ① ② 得: ∠DAE = ∠B
在 Rt△DAE 和 Rt△ABC 中
∠DAE = ∠B (已证)
∠AED = ∠BCA = 90°
AD = BA (已知)
∴ Rt△DAE ≌ Rt△ABC (AAS)
∴ AE = BC = a 且 DE = AC = 4a (全等三角形对应边相等)
则 EC = AC -- AE
= 4a -- a
= 3a
在 Rt△DEC 中,DE = 4a,EC = 3a,
由勾股定理求得 DC = 5a,即:X = 5a
∴ a = X / 5
Rt△ABC的面积 S1 = (1/2)× BC × AC
= (1/2)× a × 4a
= 2 ×(a的平方)
△ADC的面积 S2 = (1/2)× AC × DE
= (1/2)× 4a × 4a
= 8 ×(a的平方)
∴ 四边形ABCD的面积 y = S1 + S2
= 2 ×(a的平方) + 8 ×(a的平方)
= 10 ×(a的平方) (把a = X / 5 代入得)
= 10 × [(X / 5)的平方 ]
= 10 × [ X平方/ 25 ]
= (2/5)× (X平方)
= 2X2/ 5
∴ y与x的函数关系式是: y = 2X^2/ 5
∴ 设 BC = a (a > 0)
则 AC = 4a
过点D 作 DE ⊥ AC 于 点E
∵ ∠BAD = 90°
∴ ∠BAC + ∠DAE = 90° --------------------- ①
∵ ∠ACB = 90°
∴ ∠BAC + ∠B = 90° ---------------------- ②
由 ① ② 得: ∠DAE = ∠B
在 Rt△DAE 和 Rt△ABC 中
∠DAE = ∠B (已证)
∠AED = ∠BCA = 90°
AD = BA (已知)
∴ Rt△DAE ≌ Rt△ABC (AAS)
∴ AE = BC = a 且 DE = AC = 4a (全等三角形对应边相等)
则 EC = AC -- AE
= 4a -- a
= 3a
在 Rt△DEC 中,DE = 4a,EC = 3a,
由勾股定理求得 DC = 5a,即:X = 5a
∴ a = X / 5
Rt△ABC的面积 S1 = (1/2)× BC × AC
= (1/2)× a × 4a
= 2 ×(a的平方)
△ADC的面积 S2 = (1/2)× AC × DE
= (1/2)× 4a × 4a
= 8 ×(a的平方)
∴ 四边形ABCD的面积 y = S1 + S2
= 2 ×(a的平方) + 8 ×(a的平方)
= 10 ×(a的平方) (把a = X / 5 代入得)
= 10 × [(X / 5)的平方 ]
= 10 × [ X平方/ 25 ]
= (2/5)× (X平方)
= 2X2/ 5
∴ y与x的函数关系式是: y = 2X^2/ 5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼上写这么长 真的假的啊 弄的我都晕了
追问
它是抄袭的呗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询