如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E(1)求,当点P在AD上运动时,对应的...
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E
(1)求,当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围
这个 展开
(1)求,当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围
这个 展开
4个回答
展开全部
解:∵四边形ABCD为矩形,
∴∠A=∠D,
∴∠AEP+∠APE=90°,
∵PE⊥PC
∴∠APE+∠CPD=90°,
∴∠AEP=∠DPC,
∴△AEP∽△DPC;
设DP=x,BE=y,则AE=4-y,AP=6-x,
∵△AEP∽△DPC,
∴CD/PA=PD/EA
代入整理可得:y=-1/4 X^2-3/2
x+4=1/4 (x-3)2+7/4
故BE的最小值为7/4
因为BE的最大值为4,
∴BE的范围为7/4≤BE<4.
∴∠A=∠D,
∴∠AEP+∠APE=90°,
∵PE⊥PC
∴∠APE+∠CPD=90°,
∴∠AEP=∠DPC,
∴△AEP∽△DPC;
设DP=x,BE=y,则AE=4-y,AP=6-x,
∵△AEP∽△DPC,
∴CD/PA=PD/EA
代入整理可得:y=-1/4 X^2-3/2
x+4=1/4 (x-3)2+7/4
故BE的最小值为7/4
因为BE的最大值为4,
∴BE的范围为7/4≤BE<4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[(2+3)*(2+3)+1]*1/2=13
(13-2-3)/2/2+2
(13-2-3)/2/2+2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢。。。。
追问
这个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询