一牧场上的青草每天都匀速生长。这片草场可供27头牛吃6周,或供23头牛吃9周。那么可供21头牛吃几周?
2个回答
展开全部
这样想:
1、这片草地上草的数量每天都在变化,解题的关键应找到不变的量(即原来的草的数量)。
2、因为总草量可以分成两部分:原有的草与新长出来的草。新长出来的草虽然在变,但应注意到是匀速生长的。因而这片草地每天新张的草的数量也是不变的。
3、假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份草),此时新草与原有的草也均被吃完;23头牛9周需吃23×9=207(份草),此时新草与原有的草也都被吃完。而162份草是原有的草的数量与6周新长出的草的数量的总和。
4、207份是原来的草的数量与9周新长出的草的数量的总和,因此 每周新长出来的草的份数为:(207-162)÷(9-6)=15(份)。
5、原有草的数量为:162-15×6=72(份)。
6、这片草地可供21头牛吃:72÷(21-15=12(周)
1、这片草地上草的数量每天都在变化,解题的关键应找到不变的量(即原来的草的数量)。
2、因为总草量可以分成两部分:原有的草与新长出来的草。新长出来的草虽然在变,但应注意到是匀速生长的。因而这片草地每天新张的草的数量也是不变的。
3、假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份草),此时新草与原有的草也均被吃完;23头牛9周需吃23×9=207(份草),此时新草与原有的草也都被吃完。而162份草是原有的草的数量与6周新长出的草的数量的总和。
4、207份是原来的草的数量与9周新长出的草的数量的总和,因此 每周新长出来的草的份数为:(207-162)÷(9-6)=15(份)。
5、原有草的数量为:162-15×6=72(份)。
6、这片草地可供21头牛吃:72÷(21-15=12(周)
展开全部
考点:牛吃草问题.分析:1、因为总草量可以分成两部分:原有的草与新长出来的草.新长出来的草虽然在变,但应注意到是匀速生长的.因而这片草地每天新张的草的数量也是不变的.
2、假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份草),此时新草与原有的草也均被吃完;23头牛9周需吃23×9=207(份草),此时新草与原有的草也都被吃完.而162份草是原有的草的数量与6周新长出的草的数量的总和.
3、207份是原来的草的数量与9周新长出的草的数量的总和,因此 每周新长出来的草的份数为:(207-162)÷(9-6)=15(份).
4、原有草的数量为:162-15×6=72(份).
5、这片草地可供21头牛吃:72÷(21-15)=12(周).解答:解:设每1头牛1周吃的草为1份,那么牧场每周长新草(23×9-27×6)÷(9-6)=15 份.原来的牧场有草:27×6-15×6=72份.
吃旧草的牛有:21-15÷1=6 (头).
吃完草的时间:72÷6=12 (周).
答:可供21头牛吃12周.点评:这片草地上草的数量每天都在变化,解题的关键应找到不变
2、假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份草),此时新草与原有的草也均被吃完;23头牛9周需吃23×9=207(份草),此时新草与原有的草也都被吃完.而162份草是原有的草的数量与6周新长出的草的数量的总和.
3、207份是原来的草的数量与9周新长出的草的数量的总和,因此 每周新长出来的草的份数为:(207-162)÷(9-6)=15(份).
4、原有草的数量为:162-15×6=72(份).
5、这片草地可供21头牛吃:72÷(21-15)=12(周).解答:解:设每1头牛1周吃的草为1份,那么牧场每周长新草(23×9-27×6)÷(9-6)=15 份.原来的牧场有草:27×6-15×6=72份.
吃旧草的牛有:21-15÷1=6 (头).
吃完草的时间:72÷6=12 (周).
答:可供21头牛吃12周.点评:这片草地上草的数量每天都在变化,解题的关键应找到不变
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询