已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.(1)求C点,C′点的

已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.(1)求C点,C′点的坐标(可用含m的代数式表示);(2)如果点Q在抛物线的... 已知:抛物线y=x2-2x-m(m>0)与y轴交于点C,C点关于抛物线对称轴的对称点为C′点.(1)求C点,C′点的坐标(可用含m的代数式表示);(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C,C′,P,Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示);(3)在(2)的条件下,求出平行四边形的周长. 展开
 我来答
债雾
推荐于2016-03-27 · 超过59用户采纳过TA的回答
知道答主
回答量:108
采纳率:0%
帮助的人:149万
展开全部
解答:解:(1)所求对称轴为直线x=1,C(0,-m)C′(2,-m);

(2)如图所示
①当PQ∥CC′且PQ=2时,P横坐标为3,代入二次函数解析式求得P(3,3-m),
②当P′Q∥CC′且PQ=2时,P横坐标为-1,代入二次函数解析式求得P(-1,3-m),
③因为CC′⊥Q'P″,当Q′F=P″F,CF=C'F时,P″为二次函数顶点坐标,为(1,-1-m),
由于P″和Q′关于直线CC′对称,
所以Q′纵坐标为2(-m)+1+m=-m+1,
得Q′(1,1-m),
所以满足条件的P、Q坐标为P(-1,3-m),Q(1,3-m);P′(3,3-m),Q(1,3-m);P″(1,-1-m),Q′(1,1-m).

(3)①因为Q点纵坐标为3-m,C点纵坐标为-m,
所以CW=3-m+m=3,又因为WQ=1,
所以CQ=
12+32
=
10

又因为CC′=2,
所以平行四边形CC′P′Q周长为(2+
10
)×2=4+2
10

同理,平行四边形CC′QP周长也为4+2
10

②因为CF=1,FQ=
1
2
[1-m-(-1-m)]=1,C′Q=
12+12
=
2

平行四边形CC′P′Q周长为4
2

所求平行四边形周长为4+2
10
4
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式