已知f(x)=sin(2x+π/6)+sin(2x-π/6)+2[(cos)^2]x+a,当x属于【-π/4,π/4】时,f(x)的最小值为-3,求a
3个回答
展开全部
f(x)=sin(2x+π/6)+sin(2x-π/6)+2[(cos)^2]x+a
=2sin2xcos(π/6)+cos2x+1 +a
=2[sin2xcos(π/6)+cos2xsin(π/6)]+1 +a
=2sin(2x+π/6)+1+a
令 -π/2+2kπ≤2x+π/6≤π/2+2kπ
解得 -π/3+kπ≤x≤π/6+kπ
由于 x∈[-π/4,π/4],所以f(x)在[-π/4,π/6]上是增函数,
同理,f(x)在[π/6,π/4]上是减函数。
所以 最大值为f(π/6),最小值为f(-π/4)=-3
即 2sin(-π/2 +π/6)+1+a=-3,a=√3-4
解:由和差化积得:f(x)=sin(2x+π/6)+sin(2x-π/6)+2[(cos)^2]x+a=2sin2xcos(π/6)+cos2x+1 +a
=2[sin2xcos(π/6)+cos2xsin(π/6)]+1 +a
=2sin(2x+π/6)+1+a
x属于【-π/4,π/4】时 => -π/2《2x《π/2 => -π/3《2x+π/6《2/3π
由此可以知道f(x) 在-π/3《2x+π/6《2/3π区间内单调递增,所以当x=-π/3 时,函数有最小值-3
得:-3=2sin[2*(-π/3)+π/6]+1+a
-3=2sin[-2/3π+π/6]+1+a
-3=2sin[-π/2]+1+a
-3=2*(-1)+1+a
-3=-2+1+a
a=-3+2-1
a=-2
=2sin2xcos(π/6)+cos2x+1 +a
=2[sin2xcos(π/6)+cos2xsin(π/6)]+1 +a
=2sin(2x+π/6)+1+a
令 -π/2+2kπ≤2x+π/6≤π/2+2kπ
解得 -π/3+kπ≤x≤π/6+kπ
由于 x∈[-π/4,π/4],所以f(x)在[-π/4,π/6]上是增函数,
同理,f(x)在[π/6,π/4]上是减函数。
所以 最大值为f(π/6),最小值为f(-π/4)=-3
即 2sin(-π/2 +π/6)+1+a=-3,a=√3-4
解:由和差化积得:f(x)=sin(2x+π/6)+sin(2x-π/6)+2[(cos)^2]x+a=2sin2xcos(π/6)+cos2x+1 +a
=2[sin2xcos(π/6)+cos2xsin(π/6)]+1 +a
=2sin(2x+π/6)+1+a
x属于【-π/4,π/4】时 => -π/2《2x《π/2 => -π/3《2x+π/6《2/3π
由此可以知道f(x) 在-π/3《2x+π/6《2/3π区间内单调递增,所以当x=-π/3 时,函数有最小值-3
得:-3=2sin[2*(-π/3)+π/6]+1+a
-3=2sin[-2/3π+π/6]+1+a
-3=2sin[-π/2]+1+a
-3=2*(-1)+1+a
-3=-2+1+a
a=-3+2-1
a=-2
展开全部
f(x)=sin(2x+π/6)+sin(2x-π/6)+2[(cos)^2]x+a
=2sin2xcos(π/6)+cos2x+1 +a
=2[sin2xcos(π/6)+cos2xsin(π/6)]+1 +a
=2sin(2x+π/6)+1+a
令 -π/2+2kπ≤2x+π/6≤π/2+2kπ
解得 -π/3+kπ≤x≤π/6+kπ
由于 x∈[-π/4,π/4],所以f(x)在[-π/4,π/6]上是增函数,
同理,f(x)在[π/6,π/4]上是减函数。
所以 最大值为f(π/6),最小值为f(-π/4)=-3
即 2sin(-π/2 +π/6)+1+a=-3,a=√3-4
=2sin2xcos(π/6)+cos2x+1 +a
=2[sin2xcos(π/6)+cos2xsin(π/6)]+1 +a
=2sin(2x+π/6)+1+a
令 -π/2+2kπ≤2x+π/6≤π/2+2kπ
解得 -π/3+kπ≤x≤π/6+kπ
由于 x∈[-π/4,π/4],所以f(x)在[-π/4,π/6]上是增函数,
同理,f(x)在[π/6,π/4]上是减函数。
所以 最大值为f(π/6),最小值为f(-π/4)=-3
即 2sin(-π/2 +π/6)+1+a=-3,a=√3-4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:由和差化积得:f(x)=sin(2x+π/6)+sin(2x-π/6)+2[(cos)^2]x+a=2sin2xcos(π/6)+cos2x+1 +a
=2[sin2xcos(π/6)+cos2xsin(π/6)]+1 +a
=2sin(2x+π/6)+1+a
x属于【-π/4,π/4】时 => -π/2《2x《π/2 => -π/3《2x+π/6《2/3π
由此可以知道f(x) 在-π/3《2x+π/6《2/3π区间内单调递增,所以当x=-π/3 时,函数有最小值-3
得:-3=2sin[2*(-π/3)+π/6]+1+a
-3=2sin[-2/3π+π/6]+1+a
-3=2sin[-π/2]+1+a
-3=2*(-1)+1+a
-3=-2+1+a
a=-3+2-1
a=-2
=2[sin2xcos(π/6)+cos2xsin(π/6)]+1 +a
=2sin(2x+π/6)+1+a
x属于【-π/4,π/4】时 => -π/2《2x《π/2 => -π/3《2x+π/6《2/3π
由此可以知道f(x) 在-π/3《2x+π/6《2/3π区间内单调递增,所以当x=-π/3 时,函数有最小值-3
得:-3=2sin[2*(-π/3)+π/6]+1+a
-3=2sin[-2/3π+π/6]+1+a
-3=2sin[-π/2]+1+a
-3=2*(-1)+1+a
-3=-2+1+a
a=-3+2-1
a=-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询