如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两
(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的...
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由. 展开
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由. 展开
3个回答
展开全部
本题是二次函数综合题,涉及到的知识点较多,较有难度,考察待定系数法,两点间的距离以及不规则图形的面积 解:(1)由已知得:A(-1,0) B(4,5)
∵二次函数的图像经过点A(-1,0)B(4,5)
∴ 二次函数的图像经过点A(-1,0)B(4,5)
代入 解得:b=-2 c=-3
(2)∵直线AB经过点A(-1,0)B(4,5)
∴直线AB的解析式为:y=x+1
∵二次函数y=x^2-2x-3
∴设点E(t, t+1),则F(t,t^2-2t-3)
∴EF= (t+1)+It^2-2t-3I
=t+1-(t^2-2t-3)
=-(t-3/2)^2+25/4
∴当t=3/2时,EF的最大值=25/4
(3)s=75/8
ⅰ过点E作a⊥EF交抛物线于点P,
设点P(m,m^2-2m-3)
则有:m^2-2m-3=5/2
ⅱ)过点F作b⊥EF交抛物线于,
综上所述:所有点P的坐标(3点) 能使△EFP组成以EF为直角边的直角三角形.
∵二次函数的图像经过点A(-1,0)B(4,5)
∴ 二次函数的图像经过点A(-1,0)B(4,5)
代入 解得:b=-2 c=-3
(2)∵直线AB经过点A(-1,0)B(4,5)
∴直线AB的解析式为:y=x+1
∵二次函数y=x^2-2x-3
∴设点E(t, t+1),则F(t,t^2-2t-3)
∴EF= (t+1)+It^2-2t-3I
=t+1-(t^2-2t-3)
=-(t-3/2)^2+25/4
∴当t=3/2时,EF的最大值=25/4
(3)s=75/8
ⅰ过点E作a⊥EF交抛物线于点P,
设点P(m,m^2-2m-3)
则有:m^2-2m-3=5/2
ⅱ)过点F作b⊥EF交抛物线于,
综上所述:所有点P的坐标(3点) 能使△EFP组成以EF为直角边的直角三角形.
参考资料: 初中数学cooco
展开全部
解:(1)由已知得:A(-1,0) B(4,5)
∵二次函数的图像经过点A(-1,0)B(4,5)
∴
解得:b=-2 c=-3
(2如26题图:∵直线AB经过点A(-1,0)B(4,5)
∴直线AB的解析式为:y=x+1
∵二次函数
∴设点E(t, t+1),则F(t,)
∴EF=
=
∴当时,EF的最大值=
∴点E的坐标为(,)
(3)①如26题图:顺次连接点E、B、F、D得四边形EBFD.
可求出点F的坐标(,),点D的坐标为(1,-4)
S = S + S
=
=
②如26题备用图:ⅰ)过点E作a⊥EF交抛物线于点P,
设点P(m,)
则有: 解得:,
∴,
ⅱ)过点F作b⊥EF交抛物线于,设(n,)
则有: 解得: ,(与点F重合,舍去)∴
综上所述:所有点P的坐标:,(. 能使△EFP组成以EF为直角边的直角三角形.
∵二次函数的图像经过点A(-1,0)B(4,5)
∴
解得:b=-2 c=-3
(2如26题图:∵直线AB经过点A(-1,0)B(4,5)
∴直线AB的解析式为:y=x+1
∵二次函数
∴设点E(t, t+1),则F(t,)
∴EF=
=
∴当时,EF的最大值=
∴点E的坐标为(,)
(3)①如26题图:顺次连接点E、B、F、D得四边形EBFD.
可求出点F的坐标(,),点D的坐标为(1,-4)
S = S + S
=
=
②如26题备用图:ⅰ)过点E作a⊥EF交抛物线于点P,
设点P(m,)
则有: 解得:,
∴,
ⅱ)过点F作b⊥EF交抛物线于,设(n,)
则有: 解得: ,(与点F重合,舍去)∴
综上所述:所有点P的坐标:,(. 能使△EFP组成以EF为直角边的直角三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询