如何证明函数在定义域上有界的充分必要条件是它在定义域上既有上界又有下界

 我来答
蓝雪儿老师
高能答主

2021-10-14 · 愿千里马,都找到自己的伯乐!
蓝雪儿老师
采纳数:266 获赞数:85186

向TA提问 私信TA
展开全部

设函数f(x)在定义域A上有界,则存在正实数k,对任意x∈A,|f(x)|<k成立。即-k<f(x)<k成立。所以f(x)在A上有上界k,下界-k。

反过来,f(x)在定义域A上既有上界M又有下界m,即存在实数m,M,对任意对任意x∈A,m<f(x)|<M成立。取k=max{|m|,|M|},则有对任意对任意x∈A,|f(x)|<k成立。所以f(x)在A上有界。

定义域指自变量x的取值范围。

定义域是函数三要素(定义域、值域、对应法则)之一,对应法则的作用对象。求函数定义域的题型主要包括抽象函数,一般函数,函数应用题三种。

中智咨询
2024-08-28 广告
在当今竞争激烈的商业环境中,企业需要不断提高自身的竞争力,以保持市场份额和增加利润。通过人效提升,企业可以更有效地利用有限的资源,提高生产力和效益,从而实现盈利目标。中智咨询提供全方位的组织人效评价与诊断、人效提升方案等数据和管理咨询服务。... 点击进入详情页
本回答由中智咨询提供
O客
推荐于2017-09-24 · TA获得超过3.3万个赞
知道大有可为答主
回答量:7652
采纳率:88%
帮助的人:3333万
展开全部
设函数f(x)在定义域A上有界,
则存在正实数k,对任意x∈A,|f(x)|<k成立.
即-k<f(x)<k成立.
所以f(x)在A上有上界k,下界-k.
反过来,f(x)在定义域A上既有上界M又有下界m,
即存在实数m,M,对任意对任意x∈A,m<f(x)|<M成立.
取k=max{|m|,|M|},则有对任意对任意x∈A,
|f(x)|<k成立.
所以f(x)在A上有界.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式