已知函数f(x)=2sin[(π/2)x-π/3],当x∈[1/2,5/2]时,求函数y=f(x-1)+f(x)的值域.
1个回答
展开全部
y=2sin[π(x-1)/2-π/3]-2sin(πx/2-π/3)
=2sin(πx/2-5π/6)-2sin(πx/2-π/3)
=2(sinπx/2cos5π/6-cosπx/2sin5π/6-sinπx/2cosπ/3+cosπx/2sinπ/3)
=2(-sinπx/2*√3/2-cosπx/2*1/2-sinπx/2*1/2+cosπx/2*√3/2)
=(1-√3)(sinπx/2-cosπx/2)
=(1-√3)*√2sin(πx/2-π/4)
1/2<=x<=5/2
0<=πx/2-π/4<=π
所以0<=sin(πx/2-π/4)<=1
0*(1-√3)*√2<=(1-√3)*√2sin(πx/2-π/4)<=1*(1-√3)*√2
所以值域是[0,√2-√6]
=2sin(πx/2-5π/6)-2sin(πx/2-π/3)
=2(sinπx/2cos5π/6-cosπx/2sin5π/6-sinπx/2cosπ/3+cosπx/2sinπ/3)
=2(-sinπx/2*√3/2-cosπx/2*1/2-sinπx/2*1/2+cosπx/2*√3/2)
=(1-√3)(sinπx/2-cosπx/2)
=(1-√3)*√2sin(πx/2-π/4)
1/2<=x<=5/2
0<=πx/2-π/4<=π
所以0<=sin(πx/2-π/4)<=1
0*(1-√3)*√2<=(1-√3)*√2sin(πx/2-π/4)<=1*(1-√3)*√2
所以值域是[0,√2-√6]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询