
利用夹逼定理,求数列极限 lim(1+2∧n+3∧n)∧1╱n
展开全部
极限 = 3
-------------
解析:
A = lim(3^n)^(1/n) = 3
B = lim(1+2^n+3^n)^(1/n)
C = lim(3^n+3^n+3^n)^(1/n) = lim 3^[(n+1)/n] = 3
因为 A ≤ B ≤ C,且 A = C = 3,
所以 B = 3
-------------
解析:
A = lim(3^n)^(1/n) = 3
B = lim(1+2^n+3^n)^(1/n)
C = lim(3^n+3^n+3^n)^(1/n) = lim 3^[(n+1)/n] = 3
因为 A ≤ B ≤ C,且 A = C = 3,
所以 B = 3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |