在等差数列{an}中,a2+a3=7,a4+a5+a6=18,求通项公式.设前n项和为sn,求1/s3+1/s6+...+1/s3n

紧急啊!!速度!谢谢谢谢谢…... 紧急啊!!速度!谢谢谢谢谢… 展开
 我来答
370116
高赞答主

2012-01-11 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
a2+a3=7,a4+a5+a6=18
即有:(a1+d)+(a1+2d)=7,即2a1+3d=7
(a1+3d)+(a1+4d)+(a1+5d)=18,即3a1+12d=18,a1+4d=6
解得:d=1,a1=2
故an=a1+(n-1)d=2+n-1=n+1
Sn=(a1+an)n/2=(2+n+1)n/2=n(n+3)/2
1/Sn=2/n(n+3)=2/3*[1/n-1/(n+3)]
1/S3+1/S6+...+1/S3n=2/3[1/3-1/6+1/6-1/9+...+1/3n-1/(3n+3)]=2/3[1/3-1/(3n+3)]=2/3*n/(3n+3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式