
求微分方程yy''=y‘y^2+(y')^2的通解 5
展开全部
yy''+(y')^2=(yy')'=y'
所以yy'=y+c1 ,c1为常数
ydy/dx=y+c1
y/(y+c1)dy=dx
[1-c1/(y+c1)]dy=dx
y-c1ln(y+c1)=x+c
所以解为x=y-c1*ln(y+c1)+c,c,c1为常数
所以yy'=y+c1 ,c1为常数
ydy/dx=y+c1
y/(y+c1)dy=dx
[1-c1/(y+c1)]dy=dx
y-c1ln(y+c1)=x+c
所以解为x=y-c1*ln(y+c1)+c,c,c1为常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询