已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>1时,f(x+1)=f(x)+f(1),且.
这题要把“当x>1时”改掉才好,否则图像可以脱节,不好办的。
已知f(x)是定义在R上的奇函数,
当0≤x≤1时,f(x)=x^2,
当x≥0时,f(x+1)=f(x)+f(1),
若直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,
求实数k的值。
可见,当0≤x≤1时,f(x)=x^2
当1≤x≤2时,0≤x-1≤1,f(x-1)=(x-1)^2,f(1)=1^2=1,所以当x≥1时,f(x)=(x-1)^2+1
当2≤x≤3时,1≤x-1≤2,0≤x-2≤1,f(x-1)=(x-2)^2+1,f(x)=(x-2)^2+2
…………
当n≤x≤(n+1)时,f(x)=(x-n)^2+n
即f(x)=(x-[x])^2+[x],这里[x]=INT(x)=x的整数部分。
当x<0时,-x>0,所以f(-x)=(-x-[-x])^2+[-x],
因为f(x)是奇函数,所以f(x)=-{(-x-[-x])^2+[-x]}=-(x-[x+1])^2-[x+1]
如图:
y=kx与y=f(x)在原点处相交,由奇函数的对称性,在x>0时再有两个交点即可,
由y=kx和y=(x-2)^2+2,得kx=(x-2)^2+2,即x^2-(k+4)x+6=0,
△=(k+4)^2-24,当k=-4±2√6时△=0,得k=-4+2√6时,直线y=kx与曲线y=f(x)在[2,3]上相切;
由y=kx和y=(x-1)^2+1,得kx=(x-1)^2+1,即x^2-(k+2)x+2=0,
△=(k+2)^2-8,当k=-2±2√2时△=0,得k=-2+2√2时,直线y=kx与曲线y=f(x)在[1,2]上相切;
所以k∈(-2+2√2,-4+2√6)时,直线y=kx与曲线y=f(x)在(0,+∞)上有两个交点
由奇偶性,在(-∞,0)上也有两个交点
连同坐标原点,共有5个交点。
此题图下面的内容难以说得清,所以原题是填空题的形式,如果是解答题,不大容易写好。