(2013?湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C
(2013?湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解...
(2013?湛江)如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
展开
1个回答
展开全部
解:(1)设抛物线解析式为:y=a(x-3)2+4,
将A(0,-5)代入求得:a=-1,
∴抛物线解析式为y=-(x-3)2+4=-x2+6x-5.
(2)抛物线的对称轴l与⊙C相离.证明:
令y=0,即-x2+6x-5=0,得x=1或x=5,∴B(1,0),C(5,0).
如答图①所示,设切点为E,连接CE,由题意易证Rt△ABO∽Rt△BCE,
∴
=
,即
=
,
求得⊙C的半径CE=
=
=
;
而点C到对称轴x=3的距离为2,2>
,
∴抛物线的对称轴l与⊙C相离.
(3)存在.理由如下:
有两种情况:
(I)如答图②所示,点P在x轴上方.
∵A(0,-5),C(5,0),∴△AOC为等腰直角三角形,∠OCA=45°;
∵PC⊥AC,∴∠PCO=45°.
过点P作PF⊥x轴于点F,则△PCF为等腰直角三角形.
设点P坐标为(m,n),则有OF=m,PF=CF=n,
OC=OF+CF=m+n=5 ①
又点P在抛物线上,∴n=-m2+6m-5 ②
联立①②式,解得:m=2或m=5.
当m=5时,点F与点C重合,故舍去,
∴m=2,∴n=3,
∴点P坐标为(2,3);
(II)如答图③所示,点P在x轴下方.
∵A(0,-5),C(5,0),∴△AOC为等腰直角三角形,∠OAC=45°;
过点P作PF⊥y轴于点F,
∵PA⊥AC,∴∠PAF=45°,即△PAF为等腰直角三角形.
设点P坐标为(m,n)
将A(0,-5)代入求得:a=-1,
∴抛物线解析式为y=-(x-3)2+4=-x2+6x-5.
(2)抛物线的对称轴l与⊙C相离.证明:
令y=0,即-x2+6x-5=0,得x=1或x=5,∴B(1,0),C(5,0).
如答图①所示,设切点为E,连接CE,由题意易证Rt△ABO∽Rt△BCE,
∴
AB |
BC |
OB |
CE |
| ||
4 |
1 |
CE |
求得⊙C的半径CE=
4 | ||
|
4
| ||
26 |
2
| ||
13 |
而点C到对称轴x=3的距离为2,2>
2
| ||
13 |
∴抛物线的对称轴l与⊙C相离.
(3)存在.理由如下:
有两种情况:
(I)如答图②所示,点P在x轴上方.
∵A(0,-5),C(5,0),∴△AOC为等腰直角三角形,∠OCA=45°;
∵PC⊥AC,∴∠PCO=45°.
过点P作PF⊥x轴于点F,则△PCF为等腰直角三角形.
设点P坐标为(m,n),则有OF=m,PF=CF=n,
OC=OF+CF=m+n=5 ①
又点P在抛物线上,∴n=-m2+6m-5 ②
联立①②式,解得:m=2或m=5.
当m=5时,点F与点C重合,故舍去,
∴m=2,∴n=3,
∴点P坐标为(2,3);
(II)如答图③所示,点P在x轴下方.
∵A(0,-5),C(5,0),∴△AOC为等腰直角三角形,∠OAC=45°;
过点P作PF⊥y轴于点F,
∵PA⊥AC,∴∠PAF=45°,即△PAF为等腰直角三角形.
设点P坐标为(m,n)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询