全概率公式的应用
1个回答
展开全部
全概率公式的应用在研究实际问题的过程中,除了要考虑事件A的概率P(A)之外,还须考虑在“已知事件B已发生”条件下,事件A发生的概率。一般地说,后者的概率与前者的概率未必相同。为了清晰起见,第二类情况下的概率称为条件概率,记为P(A|B)或PB(A)。
全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。概率论的一个重要内容是研究怎样从一些较简单事件概率的计算来推算较复杂事件的概率,全概率公式和Bayes公式正好起到了这样的作用。对一个较复杂的事件A,如果能找到一伴随A发生的完备事件组B1、B2...,而计算各个B的概率与条件概率P(A/Bi)相对又要容易些,这是为了计算与事件A有关的概率,可能需要使用全概率公式和Bayes公式。
全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。概率论的一个重要内容是研究怎样从一些较简单事件概率的计算来推算较复杂事件的概率,全概率公式和Bayes公式正好起到了这样的作用。对一个较复杂的事件A,如果能找到一伴随A发生的完备事件组B1、B2...,而计算各个B的概率与条件概率P(A/Bi)相对又要容易些,这是为了计算与事件A有关的概率,可能需要使用全概率公式和Bayes公式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询